如圖1,在△ABC中,∠ACB為銳角.點(diǎn)D為射線(xiàn)BC上一動(dòng)點(diǎn),連接AD,以AD為一邊且在A(yíng)D的右側(cè)作正方形ADEF.解答下列問(wèn)題:
(1)如果AB=AC,∠BAC=90°.
①當(dāng)點(diǎn)D在線(xiàn)段BC上時(shí)(與點(diǎn)B不重合),如圖2,線(xiàn)段CF、BD之間的位置關(guān)系為
 
,數(shù)量關(guān)系為
 
;
②當(dāng)點(diǎn)D在線(xiàn)段BC的延長(zhǎng)線(xiàn)上時(shí),如圖3,①中的結(jié)論是否仍然成立,為什么?
精英家教網(wǎng)
(2)①如果AB=AC,∠BAC≠90°,點(diǎn)D在射線(xiàn)BC上運(yùn)動(dòng).在圖4中同樣作出正方形ADEF,你發(fā)現(xiàn)(1)問(wèn)中的結(jié)論是否成立?不用說(shuō)明理由;
②如果∠BAC=90°,AB≠AC,點(diǎn)D在射線(xiàn)BC上運(yùn)動(dòng).在圖5中同樣作出正方形ADEF,你發(fā)現(xiàn)(1)問(wèn)中的結(jié)論是否成立?不用說(shuō)明理由;
精英家教網(wǎng)
(3)要使(1)問(wèn)中CF⊥BC的結(jié)論成立,試探究:△ABC應(yīng)滿(mǎn)足的一個(gè)條件,(點(diǎn)C、F重合除外)畫(huà)出相應(yīng)圖形(畫(huà)圖不寫(xiě)作法),并說(shuō)明理由;
(4)在(3)問(wèn)的條件下,設(shè)正方形ADEF的邊DE與線(xiàn)段CF相交于點(diǎn)P,設(shè)AC=2
2
,BC=
3
2
,求線(xiàn)段CP長(zhǎng)的最大值.
分析:(1)當(dāng)CF與BD位置關(guān)系為互相垂直,數(shù)量關(guān)系是相等.首先證明△DAB≌△FAC,然后推出∠ACF=45°,∠BCF=∠ACB+∠ACF=90°,求出CF⊥BD;
(2)根據(jù)題意畫(huà)出圖形來(lái)理解.學(xué)會(huì)數(shù)形結(jié)合解答問(wèn)題.
(3)過(guò)點(diǎn)A作AG⊥AC,證明△GAD≌△CAF后可證得CF⊥BD;
(4)作AQ⊥BC交CB的延長(zhǎng)線(xiàn)于點(diǎn)Q,利用勾股定理求出AQ=CQ=2,證明△AQD∽△DCP,利用線(xiàn)段比求出CP的值.
解答:解:(1)①CF與BD位置關(guān)系是垂直、數(shù)量關(guān)系是相等;(1分)

②當(dāng)點(diǎn)D在BC的延長(zhǎng)線(xiàn)上時(shí)①的結(jié)論仍成立(如圖3).
由正方形ADEF得AD=AF,∠DAF=90°,
∵∠BAC=90°,
∴∠DAF=∠BAC,
∴∠DAB=∠FAC,
又AB=AC,
∴△DAB≌△FAC,精英家教網(wǎng)
∴CF=BD,
∠ACF=∠ABD.
∵∠BAC=90°,AB=AC,
∴∠ABC=45°,∴∠ACF=45°,
∴∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.(3分)
(2)①畫(huà)出圖形(如圖4),判斷:(1)中的結(jié)論不成立.精英家教網(wǎng)

②畫(huà)出圖形(如圖5),判斷:(1)中的結(jié)論不成立.(4分)

(3)當(dāng)∠BCA=45°時(shí),CF⊥BD(如圖6).
理由是:過(guò)點(diǎn)A作AG⊥AC交BC于點(diǎn)G,
∴AC=AG.
∵∠BCA=45°,
∴∠AGD=45°,精英家教網(wǎng)
∴△GAD≌△CAF
∴∠ACF=∠AGD=45°.
∠BCF=∠ACB+∠ACF=90°
即CF⊥BD.(5分)

(4)當(dāng)具備∠BCA=45°時(shí),
過(guò)點(diǎn)A作AQ⊥BC交CB的延長(zhǎng)線(xiàn)于點(diǎn)Q,(如圖7),
∵DE與CF交于點(diǎn)P時(shí),此時(shí)點(diǎn)D位于線(xiàn)段CQ上,
∵∠BCA=45°,AC=2
2
,精英家教網(wǎng)
∴由勾股定理可求得AQ=CQ=2.
設(shè)CD=x,∴DQ=2-x,
∵∠ADB+∠ADE+∠PDC=180°
且∠ADE=90°,
∴∠ADQ+∠PDC=90°,
又∵在直角△PCD中,∠PDC+∠DPC=90°
∴∠ADQ=∠DPC,
∵∠AQD=∠DCP=90°
∴△AQD∽△DCP,
CP
DQ
=
CD
AQ
,∴
CP
2-x
=
x
2

∴CP=-
1
2
x2+x=-
1
2
(x-1)2+
1
2
.(7分)
∵0<x≤
3
2
,
∴當(dāng)x=1時(shí),CP有最大值
1
2
.(8分)
點(diǎn)評(píng):本題綜合考查的是相似三角形的判定,勾股定理,正方形的性質(zhì)等有關(guān)知識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖1,在△ABC中,AB=AC,點(diǎn)D是邊BC的中點(diǎn).以BD為直徑作圓O,交邊AB于點(diǎn)P,連接PC,交AD于點(diǎn)E.
(1)求證:AD是圓O的切線(xiàn);
(2)當(dāng)∠BAC=90°時(shí),求證:
PE
CE
=
1
2
;
(3)如圖2,當(dāng)PC是圓O的切線(xiàn),E為AD中點(diǎn),BC=8,求AD的長(zhǎng).精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我們給出如下定義:有一組相鄰內(nèi)角相等的四邊形叫做等鄰角四邊形.請(qǐng)解答下列問(wèn)題:
(1)寫(xiě)出一個(gè)你所學(xué)過(guò)的特殊四邊形中是等鄰角四邊形的圖形的名稱(chēng);
(2)如圖1,在△ABC中,AB=AC,點(diǎn)D在BC上,且CD=CA,點(diǎn)E、F分別為BC、AD的中點(diǎn),連接EF并延長(zhǎng)交AB于點(diǎn)G.求證:四邊形AGEC是等鄰角四邊形;
(3)如圖2,若點(diǎn)D在△ABC的內(nèi)部,(2)中的其他條件不變,EF與CD交于點(diǎn)H,圖中是否存在等鄰角四邊形,若存在,指出是哪個(gè)四邊形,不必證明;若不存在,請(qǐng)說(shuō)精英家教網(wǎng)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)已知:如圖1,在四邊形ABCD中,BC⊥CD,∠ACD=∠ADC.求證:AB+AC>
BC2+CD2

(2)已知:如圖2,在△ABC中,AB上的高為CD,試判斷(AC+BC)2與AB2+4CD2之間的大小關(guān)系,并證明你的結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,AD和AE分別是△ABC的BC邊上的高和中線(xiàn),點(diǎn)D是垂足,點(diǎn)E是BC的中點(diǎn),規(guī)定:λA=
DE
BD
.如圖2,在△ABC中,∠C=90°,∠A=30°,λC=
1
3
1
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在△ABC中,∠BAC的平分線(xiàn)AD與∠BCA的平分線(xiàn)CE交于點(diǎn)O.
(1)求證:∠AOC=90°+
12
∠ABC;
(2)當(dāng)∠ABC=90°時(shí),且AO=3OD(如圖2),判斷線(xiàn)段AE,CD,AC之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案