(2005•日照)如圖,⊙O1和⊙O2內(nèi)切于點P,且⊙O1過點O2,PB是⊙O2的直徑,A為⊙O2上的點,連接AB,過O1作O1C⊥BA于C,連接CO2.已知PA=,PB=4.
(1)求證:BA是⊙O1的切線;
(2)求∠BCO2的正切值.

【答案】分析:(1)由題意得O1C⊥BA,證得O1C為半徑即可;
(2)應把∠BCO2進行轉(zhuǎn)移,轉(zhuǎn)移到已求得的線段的比值.
解答:(1)證明:∵PB是⊙O2的直徑,A為⊙O2上的點,
∴∠PAB=90°.
又∵O1C⊥BA,
∴△PAB∽△O1CB.
∵PA=,PB=4,
∴01C=1.
∴O1C是⊙O1的半徑,
∵O1C⊥BA于C,
∴BA是⊙O1的切線.

(2)解:BC==
連接PC;
∵∠B=∠B,∠BCO2=∠BPC,
∴△BPC∽△BCO2,
∴O2C:CP=BO2:BC=2:=tanBPC=tanBCO2
(在Rt△PCO2中,tanBPC=O2C:CP)
∴tanBCO2=
點評:證得直線為切線的條件:到圓心的距離等于半徑,與半徑垂直;要求的三角函數(shù)值需轉(zhuǎn)移到已知的線段的比.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2005•日照)如圖,△OAB是邊長為4+2的等邊三角形,其中O是坐標原點,頂點B在y軸的正半軸上.將△OAB折疊,使點A與OB邊上的點P重合,折痕與OA、AB的交點分別是E、F.如果PE∥x軸,
(1)求點P、E的坐標;
(2)如果拋物線y=-x2+bx+c經(jīng)過點P、E,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年山東省日照市中考數(shù)學試卷(解析版) 題型:解答題

(2005•日照)如圖,△OAB是邊長為4+2的等邊三角形,其中O是坐標原點,頂點B在y軸的正半軸上.將△OAB折疊,使點A與OB邊上的點P重合,折痕與OA、AB的交點分別是E、F.如果PE∥x軸,
(1)求點P、E的坐標;
(2)如果拋物線y=-x2+bx+c經(jīng)過點P、E,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《圓》(16)(解析版) 題型:解答題

(2005•日照)如圖,直角梯形ABCD中,AD∥BC,∠A=90°,∠C=60°,AD=3cm,BC=9cm.⊙O1的圓心O1從點A開始沿折線A-D-C以1cm/s的速度向點C運動,⊙O2的圓心O2從點B開始沿BA邊以cm/s的速度向點A運動,⊙O1半徑為2cm,⊙O2的半徑為4cm,若O1、O2分別從點A、點B同時出發(fā),運動的時間為t.
(1)請求出⊙O2與腰CD相切時t的值;
(2)在0s<t≤3s范圍內(nèi),當t為何值時,⊙O1與⊙O2外切?

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《四邊形》(10)(解析版) 題型:解答題

(2005•日照)如圖,直角梯形ABCD中,AD∥BC,∠A=90°,∠C=60°,AD=3cm,BC=9cm.⊙O1的圓心O1從點A開始沿折線A-D-C以1cm/s的速度向點C運動,⊙O2的圓心O2從點B開始沿BA邊以cm/s的速度向點A運動,⊙O1半徑為2cm,⊙O2的半徑為4cm,若O1、O2分別從點A、點B同時出發(fā),運動的時間為t.
(1)請求出⊙O2與腰CD相切時t的值;
(2)在0s<t≤3s范圍內(nèi),當t為何值時,⊙O1與⊙O2外切?

查看答案和解析>>

同步練習冊答案