如圖,在菱形ABCD中,點E、F分別是BD、CD的中點,EF=6cm,則AB=    cm.
【答案】分析:連接AC,得出∠DEC=90°,根據(jù)直角三角形斜邊上中線性質(zhì)得出EF=CD,求出CD即可.
解答:解:
連接AC,
∵四邊形ABCD是菱形,
∴AB=CD,AC⊥BD,
∴∠DEC=90°,
∵F為CD的中點,
∴EF=CD=6,
∴CD=12,
∴AB=CD=12,
故答案為:12.
點評:本題考查了直角三角形斜邊上中線,三角形的中位線,菱形的性質(zhì),關鍵是求出EF=CD.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖:在菱形ABCD中,AC=6,BD=8,則菱形的邊長為( 。
A、5B、10C、6D、8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在菱形ABCD中,∠ABC=60°,E為AB邊的中點,P為對角線BD上任意一點,AB=4,則PE+PA的最小值為
 
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•河南)如圖,在菱形ABCD中,AB=2,∠DAB=60°,點E是AD邊的中點.點M是AB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD、AN.
(1)求證:四邊形AMDN是平行四邊形;
(2)填空:①當AM的值為
1
1
時,四邊形AMDN是矩形;
           ②當AM的值為
2
2
時,四邊形AMDN是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•攀枝花)如圖,在菱形ABCD中,DE⊥AB于點E,cosA=
35
,BE=4,則tan∠DBE的值是
2
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在菱形ABCD中,AE⊥BC,垂足為F,EC=1,∠B=30°,求菱形ABCD的周長.

查看答案和解析>>

同步練習冊答案