【題目】解不等式組: ,并把解集表示在數(shù)軸上.

【答案】解:

解①得,x>2,

解②得,x>3,

把它的解集表示在數(shù)軸上,


【解析】

根據(jù)同大取較大的原則,求解不等式組的解集.

【考點(diǎn)精析】本題主要考查了不等式的解集在數(shù)軸上的表示和一元一次不等式組的解法的相關(guān)知識點(diǎn),需要掌握不等式的解集可以在數(shù)軸上表示,分三步進(jìn)行:①畫數(shù)軸②定界點(diǎn)③定方向.規(guī)律:用數(shù)軸表示不等式的解集,應(yīng)記住下面的規(guī)律:大于向右畫,小于向左畫,等于用實(shí)心圓點(diǎn),不等于用空心圓圈;解法:①分別求出這個不等式組中各個不等式的解集;②利用數(shù)軸表示出各個不等式的解集;③找出公共部分;④用不等式表示出這個不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 )才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算正確的是(
A.﹣a2?(﹣a3)=a6
B.(a23=a6
C.( 2=﹣a2﹣2a﹣1
D.(2a+1)0=1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖坐標(biāo)平面內(nèi),A(﹣2,0),B(0,﹣4),AB⊥AC,AB=AC,△ABC經(jīng)過平移后,得△A′B′C′,B點(diǎn)的對應(yīng)點(diǎn)B′(6,0),A,C對應(yīng)點(diǎn)分別為A′,C′.

(1)求C點(diǎn)坐標(biāo);
(2)直接寫出A′,C′坐標(biāo),并在圖(2)中畫出△A′B′C′;
(3)P為y軸負(fù)半軸一動點(diǎn),以A′P為直角邊以A’為直角頂點(diǎn),在A′P右側(cè)作等腰直角三角形A′PD.①試證明點(diǎn)D一定在x軸上;②若OP=3,求D點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC在直角坐標(biāo)系中,

(1)請寫出△ABC各點(diǎn)的坐標(biāo);
(2)求出SABC;
(3)若把△ABC向上平移2個單位,再向右平移2個單位得△A′B′C′,在圖中畫出△ABC變化位置,并寫出A′、B′、C′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點(diǎn)A、B、C的坐標(biāo)分別是(1,0)、(3,1)、(3,3),雙曲線(k≠0,x>0)過點(diǎn)D.

(1)求雙曲線的解析式;

(2)作直線AC交y軸于點(diǎn)E,連結(jié)DE,求△CDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組 ,并把解集在數(shù)軸上表示出來,再求出符合條件的正整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的對角線AC,BD相交于點(diǎn)O,點(diǎn)E是CD的中點(diǎn),△ABD的周長為16cm,則△DOE的周長是cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們給出如下定義:順次連接任意一個四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形.

(1)如圖1,四邊形ABCD中,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn).

求證:中點(diǎn)四邊形EFGH是平行四邊形;

(2)如圖2,點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),且滿足PA=PB,PC=PD,∠APB=∠CPD,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn),猜想中點(diǎn)四邊形EFGH的形狀,并證明你的猜想;

(3)若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點(diǎn)四邊形EFGH的形狀.(不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車專賣店銷售A,B兩種型號的新能源汽車.上周售出1輛A型車和3輛B型車,銷售額為96萬元;本周已售出2輛A型車和1輛B型車,銷售額為62萬元.
(1)求每輛A型車和B型車的售價各為多少元.
(2)甲公司擬向該店購買A,B兩種型號的新能源汽車共6輛,購車費(fèi)不少于130萬元,且不超過140萬元.則有哪幾種購車方案?

查看答案和解析>>

同步練習(xí)冊答案