【題目】小河兩岸邊各有一棵樹,分別高30尺和20尺,兩樹的距離是50尺,每棵樹的樹頂上都停著一只鳥.忽然,兩只鳥同時看見水面上游出一條魚,它們立刻飛去抓魚,速度相同,并且同時到達目標(biāo).則這條魚出現(xiàn)的地方離開比較高的樹的距離為___________尺.

【答案】20

【解析】由題意得:如圖所示:

AB=20尺,DC=30尺,BC=50尺,

設(shè)ECx,則BE為(50-x),
Rt△ABE中,AE2=AB2+BE2=202+(50-x)2,
Rt△DEC中,DE2=DC2+EC2=302+x2,
又∵AE=DE,
∴x2+302=(50-x)2+202
解得:x=20,
即這條魚出現(xiàn)的地方離比較高的樹的樹根距離為20尺.
故答案是:20.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2(xy2﹣2x2y)﹣3(xy2﹣x2y)+(2xy2﹣2x2y)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=2x2y=﹣2x2 , y=x2共有的性質(zhì)是( 。
A.開口向下
B.對稱軸是y軸
C.都有最低點
D.y的值隨x的增大而減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正比例函數(shù)y=(m+2)x中,y的值隨x的增大而增大,而正比例函數(shù)y=(2m-3)x , y的值隨x的增大而減小,且m為整數(shù),你能求出嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】木工師傅用兩顆水泥釘就能將一根木條固定在墻壁上,這樣做的數(shù)學(xué)依據(jù)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點P(﹣1,2)關(guān)于x軸的對稱點的坐標(biāo)為( )
A.(﹣1,﹣2)
B.(1,2)
C.(2,﹣1)
D.(﹣2,1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,拋物線經(jīng)過點M(1,3)和N(3,5)

(1)試判斷該拋物線與x軸交點的情況;

(2)平移這條拋物線,使平移后的拋物線經(jīng)過點A(﹣2,0),且與y軸交于點B,同時滿足以A、O、B為頂點的三角形是等腰直角三角形,請你寫出平移過程,并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A(x1,y1)、B(x2,y2)在一次函數(shù)y=-2x+b的圖象上,若x1x2,則y1______y2(“=”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,面積為6的平行四邊形紙片ABCD中,AB=3,∠BAD=45°,按下列步驟進行裁剪和拼圖

第一步:如圖①,將平行四邊形紙片沿對角線BD剪開,得到△ABD和△BCD紙片,再將△ABD紙片沿AE剪開(E為BD上任意一點),得到△ABE和△ADE紙片;

第二步:如圖②,將△ABE紙片平移至△DCF處,將△ADE紙片平移至△BCG處;

第三步:如圖③,將△DCF紙片翻轉(zhuǎn)過來使其背面朝上置于△PQM處(邊PQ與DC重合,△PQM和△DCF在DC同側(cè)),將△BCG紙片翻轉(zhuǎn)過來使其背面朝上置于△PRN處,(邊PR與BC重合,△PRN和△BCG在BC同側(cè))則由紙片拼成的五邊形PMQRN中,對角線MN長度的最小值為

查看答案和解析>>

同步練習(xí)冊答案