用配方法解關(guān)于的一元二次方程時,配方后的方程可以是(    )

  A.       B.         C.      D.


A  解析:由,得.


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:


不等式組的整數(shù)解的個數(shù)是( 。

 

A.

3

B.

5

C.

7

D.

無數(shù)個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


在“綠滿鄂南”行動中,某社區(qū)計劃對面積為1800m2的區(qū)域進行綠化.經(jīng)投標,由甲、乙兩個工程隊來完成,已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化面積的2倍,并且在獨立完成面積為400m2區(qū)域的綠化時,甲隊比乙隊少用4天.

(1)求甲、乙兩工程隊每天能完成綠化的面積.

(2)設(shè)甲工程隊施工x天,乙工程隊施工y天,剛好完成綠化任務,求y與x的函數(shù)解析式.

(3)若甲隊每天綠化費用是0.6萬元,乙隊每天綠化費用為0.25萬元,且甲乙兩隊施工的總天數(shù)不超過26天,則如何安排甲乙兩隊施工的天數(shù),使施工總費用最低?并求出最低費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如果m,n是兩個不相等的實數(shù),且滿足m2﹣m=3,n2﹣n=3,那么代數(shù)式2n2﹣mn+2m+2015= 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


閱讀資料:

如圖1,在平面之間坐標系xOy中,A,B兩點的坐標分別為A(x1,y1),B(x2,y2),由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2,所以A,B兩點間的距離為AB= .

我們知道,圓可以看成到圓心距離等于半徑的點的集合,如圖2,在平面直角坐標系xoy中,A(x,y)為圓上任意一點,則A到原點的距離的平方為OA2=|x﹣0|2+|y﹣0|2,當⊙O的半徑為r時,⊙O的方程可寫為:x2+y2=r2

問題拓展:如果圓心坐標為P(a,b),半徑為r,那么⊙P的方程可以寫為。 綜合應用:

如圖3,⊙P與x軸相切于原點O,P點坐標為(0,6),A是⊙P上一點,連接OA,使tan∠POA=,作PD⊥OA,垂足為D,延長PD交x軸于點B,連接AB.

①證明AB是⊙P的切點;

②是否存在到四點O,P,A,B距離都相等的點Q?若存在,求Q點坐標,并寫出以Q為圓心,以O(shè)Q為半徑的⊙O的方程;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


若關(guān)于的一元二次方程有兩個相等實數(shù)根,則的值是( 。

A. -1          B. 1        C. -4          D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


若矩形的長是,寬是,一個正方形的面積等于該矩形的面積,則正方形的邊長是_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


矩形、菱形、正方形都具有的性質(zhì)是( 。

A.每一條對角線平分一組對角       B.對角線相等

C.對角線互相平分                  D.對角線互相垂直

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,正方形ABCD中,點E在對角線AC上,連接EB、ED.

(1)求證:△BCE≌△DCE

(2)延長BEAD于點F,若∠DEB=140º,求∠AFE的度數(shù).

查看答案和解析>>

同步練習冊答案