已知:如圖,平面內兩點A、B的坐標分別為(-4,1)、(-1,2).
(1)求A、B兩點之間的距離;
(2)畫出點C,使得點C到A、B兩點的距離相等,且點C到∠AOB兩邊的距離相等(無需寫畫法,保留畫圖痕跡).

解:(1)AB===
(2)

分析:(1)根據(jù)兩點間的距離公式進行計算,即A(x,y),B(a,b),則AB=;
(2)根據(jù)到線段兩個端點距離相等的點在線段的垂直平分線上和到角兩邊距離相等的點在角的平分線上.
點評:此題綜合考查了兩點間的距離的求法以及線段垂直平分線的性質和角平分線的性質.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知,如圖,在直角坐標系內,△ABC的頂點在坐標軸上,關于x的方程x2-4x+m2-2m+5=0有實數(shù)根,并且AB、AC的長分別是方程兩根的5倍.
(1)求AB、AC的長;
(2)若tan∠ACO=
43
,P是AB的中點,求過C、P兩點的直線解析式;
(3)在(2)問的條件下,坐標平面內是否存在點M,使以點O、M、P、C為頂點的四邊形是平精英家教網(wǎng)行四邊形?若存在,請直接寫出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•歷下區(qū)一模)已知:如圖,平面直角坐標系內的矩形ABCD,頂點A的坐標為(0,3),BC=2AB,P為AD邊上一動點(P與點A、D不重合),以點P為圓心作⊙P與對角線AC相切于點F,過P、F作直線L,交BC邊于點E,當點P運動到點P1位置時,直線L恰好經過點B,此時直線的解析式是y=2x+1
(1)BC、AP1的長;
(2)①求過B、P1、D三點的拋物線的解析式;
②求當⊙P與拋物線的對稱軸相切時⊙P的半徑r的值;
(3)以點E為圓心作⊙E與x軸相切,當直線L把矩形ABCD分成兩部分的面積之比為3:5時,則⊙P和⊙E的位置關系如何?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)如圖,在△ABC中,AB=AC,D是底邊BC上的一點,過點D作BC的垂線,交AB于點E,交AC的延長線于F,則△AEF是等腰三角形.請在解答過程中的括號里填寫理由.
解:作AH⊥BC于H
∵AB=AC(已知)
∴∠1=∠2
(等腰三角形三線合一)
(等腰三角形三線合一)

∵DF⊥BC(已知)
∴AH∥DF(平面內垂直于同一條直線的兩直線平行)
∴∠1=∠F
(兩直線平行,同位角相等)
(兩直線平行,同位角相等)

∠2=∠3
(兩直線平行,內錯角相等)
(兩直線平行,內錯角相等)

∴∠F=∠3(等量代換)
∴AE=AF
(等角對等邊)
(等角對等邊)

∴△AEF是等腰三角形.
(2)如圖,AB∥CD,AE交CD于點C,DE⊥AE,垂足為E,∠A=36°,求∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖,平面直角坐標系內的矩形ABCD,頂點A的坐標為(0,3),BC=2AB,P為AD邊上一動點(P與點A、D不重合),以點P為圓心作⊙P與對角線AC相切于點F,過P、F作直線L,交BC邊于點E,當作業(yè)寶點P運動到點P1位置時,直線L恰好經過點B,此時直線的解析式是y=2x+1
(1)BC、AP1的長;
(2)①求過B、P1、D三點的拋物線的解析式;
②求當⊙P與拋物線的對稱軸相切時⊙P的半徑r的值;
(3)以點E為圓心作⊙E與x軸相切,當直線L把矩形ABCD分成兩部分的面積之比為3:5時,則⊙P和⊙E的位置關系如何?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年山東省濟南市歷下區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

已知:如圖,平面直角坐標系內的矩形ABCD,頂點A的坐標為(0,3),BC=2AB,P為AD邊上一動點(P與點A、D不重合),以點P為圓心作⊙P與對角線AC相切于點F,過P、F作直線L,交BC邊于點E,當點P運動到點P1位置時,直線L恰好經過點B,此時直線的解析式是y=2x+1
(1)BC、AP1的長;
(2)①求過B、P1、D三點的拋物線的解析式;
②求當⊙P與拋物線的對稱軸相切時⊙P的半徑r的值;
(3)以點E為圓心作⊙E與x軸相切,當直線L把矩形ABCD分成兩部分的面積之比為3:5時,則⊙P和⊙E的位置關系如何?并說明理由.

查看答案和解析>>

同步練習冊答案