【題目】(1)問題發(fā)現(xiàn)
如圖1,△ACB和△DCE均為等邊三角形,點A,D,E在同一直線上,連接BE,求∠AEB的度數(shù).
(2)拓展探究
如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點A、D、E在同一直線上,CM為△DCE中DE邊上的高,連接BE.請求∠AEB的度數(shù)及線段CM,AE,BE之間的數(shù)量關(guān)系,并說明理由.
【答案】(1)60°;(2)∠AEB=90°AE= BE+2CM.
【解析】解:(1)∵△ACB和△DCE均為等邊三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=60°,
∴∠ACD=60°﹣∠DCB =∠BCE.
在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS).
∴∠ADC=∠BEC.
∵△DCE為等邊三角形,
∴∠CDE=∠CED=60°.
∵點A,D,E在同一直線上,
∴∠ADC=120°,
∴∠BEC=120°.
∴∠AEB=∠BEC﹣∠CED=60°.
(2)
∵△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°
∴CA=CB,CD=CE.
且∠ACD=∠BCE.
在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS).
∴AD=BE,∠ADC=∠BEC.
∵△DCE為等腰直角三角形,
∴∠CDE=∠CED=45°.
∵點A,D,E在同一直線上,
∴∠ADC=135°,
∴∠BEC=135°.
∴∠AEB=∠BEC﹣∠CED=90°.
∵CD=CE,CM⊥DE,
∴DM=ME.
∵∠DCE=90°,
∴DM=ME=CM.
∴AE=AD+DE=BE+2CM.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
如圖,將一張矩形大鐵皮切割成九塊,切痕如下圖虛線所示,其中有兩塊是邊長都為m厘米的大正方形,兩塊是邊長都為n厘米的小正方形,五塊是長寬分別是m厘米、n厘米的全等小矩形,且m>n.
(1)用含m、n的代數(shù)式表示切痕的總長為_____________厘米;
(2)若每塊小矩形的面積為48厘米2,四個正方形的面積和為200厘米2,試求(m+n)2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一位同學(xué)拿了兩塊45°的三角尺△MNK、△ACB做了一個探究活動:將△MNK的直角頂點M放在△ABC的斜邊AB的中點處,設(shè)AC=BC=a.
(1)如圖1,兩個三角尺的重疊部分為△ACM,則重疊部分的面積為 ,周長為 .
(2)將圖1中的△MNK繞頂點M逆時針旋轉(zhuǎn)45°,得到圖2,此時重疊部分的面積為 ,周長為 .
2(3)如果將△MNK繞M旋轉(zhuǎn)到不同于圖1,圖2的位置,如圖3所示,猜想此時重疊部分的面積為多少?并試著加以驗證.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 (2016湖南湘西州第14題)一個等腰三角形一邊長為4cm,另一邊長為5cm,那么這個等腰三角形的周長是( )
A.13cm B.14cm C.13cm或14cm D.以上都不對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某次數(shù)學(xué)競賽初試有試題25道,閱卷規(guī)定:每答對一題得4分,每答錯(包括未答)一題得(﹣1)分,得分不低于60分則可以參加復(fù)試.那么,若要參加復(fù)試,初試的答對題數(shù)至少為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點A(a,1)與點A′(5,b)關(guān)于坐標原點對稱,則實數(shù)a、b的值是( )
A.a=5,b=1 B.a=-5,b=1
C.a=5,b=-1 D.a=-5,b=-1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次數(shù)學(xué)知識競賽共有30道題,規(guī)定,答對一道題得4分,不答或答錯一道題倒扣2分,若甲同學(xué)答對25題,答錯5道題,則甲 同學(xué)得________分,若得分低于60分者獲獎,則獲獎?wù)咧辽賾?yīng)答對________道題。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,點M在第四象限,到x軸,y軸的距離分別為6,4,則點M的坐標為( 。
A. (4,﹣6) B. (﹣4,6) C. (﹣6,4) D. (﹣6,﹣4)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com