【題目】在平面直角坐標(biāo)系中,正方形、正方形、正方形、正方形、…、正方形按如圖所示的方式放置,其中點(diǎn),,,,…,均在一次函數(shù)的圖象上,點(diǎn),,,,…,均在x軸上.若點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為______.
【答案】(2n-1-1,2n-1)
【解析】
首先求得直線的解析式,分別求得,,,…的坐標(biāo),可以得到一定的規(guī)律,據(jù)此即可求解.
】解:∵B1的坐標(biāo)為(1,1),點(diǎn)B2的坐標(biāo)為(3,2),
∴正方形A1B1C1O邊長為1,正方形A2B2C2C1邊長為2,
∴A1的坐標(biāo)是(0,1),A2的坐標(biāo)是:(1,2),
代入y=kx+b得
,
解得:
則直線的解析式是:y=x+1.
∵A1B1=1,點(diǎn)B2的坐標(biāo)為(3,2),
∴A1的縱坐標(biāo)是1,A2的縱坐標(biāo)是2.
在直線y=x+1中,令x=3,則縱坐標(biāo)是:3+1=4=22;
則A4的橫坐標(biāo)是:1+2+4=7,則A4的縱坐標(biāo)是:7+1=8=23;
據(jù)此可以得到An的縱坐標(biāo)是:2n-1,橫坐標(biāo)是:2n-1-1.
故點(diǎn)An的坐標(biāo)為 (2n-1-1,2n-1).
故答案是:(2n-1-1,2n-1).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】運(yùn)用圖形變化的方法研究下列問題:如圖,AB是⊙O的直徑,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8。則圖中陰影部分的面積是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知兩點(diǎn)在數(shù)軸上從各自位置同時(shí)向左右勻速運(yùn)動(規(guī)定向右為正)
時(shí)間 位置 | 0秒 | 3秒 | 6秒 |
在數(shù)軸上對應(yīng)的數(shù) | 6 | -3 | |
在數(shù)軸上對應(yīng)的數(shù) | 2 | 8 |
(1)請你將上面表格補(bǔ)充完整;
(2)點(diǎn)、點(diǎn)運(yùn)動過程中是否會相遇,如果能相遇,請求出相遇的時(shí)間
(3)點(diǎn)、點(diǎn)兩點(diǎn)間的距離能否為5個(gè)單位長度?若能,請求出它們運(yùn)動的時(shí)間
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為宣傳2022年北京﹣張家口冬季奧運(yùn)會,小王在網(wǎng)上銷售一種成本為20元/件的本屆冬季奧運(yùn)會宣傳文化衫,銷售過程中的其他各種費(fèi)用(不再含文化衫成本)總計(jì)50(百元),有關(guān)銷售量y(百件)與銷售價(jià)格x(元/件)的相關(guān)信息如下:
銷售量y(百件) | y=﹣0.1x+8 | y= |
銷售價(jià)格x(元/件) | 30≤x≤60 | 60<x≤80 |
(1)求銷售這種文化衫的純利潤w(百元)與銷售價(jià)格x(元/件)的函數(shù)關(guān)系式;
(2)銷售價(jià)格定為多少元/件時(shí),獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一根繩子對折以后用線段表示,現(xiàn)從處將繩子剪斷,剪斷后的各段繩子中最長的一段為,若,則這條繩子的原長為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)O為直線AB上一點(diǎn),在直線AB上側(cè)任作一個(gè)∠COD,使得∠COD=90°.
(1)如圖1,過點(diǎn)O作射線OE,當(dāng)OE恰好為∠AOD的角平分線時(shí),請直接寫出∠BOD與∠COE之間的倍數(shù)關(guān)系,即∠BOD= ______ ∠COE(填一個(gè)數(shù)字);
(2)如圖2,過點(diǎn)O作射線OE,當(dāng)OC恰好為∠AOE的角平分線時(shí),另作射線OF,使得OF平分∠COD,求∠FOB+∠EOC的度數(shù);
(3)在(2)的條件下,若∠EOC=3∠EOF,求∠AOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分8分) 2011年5月上旬,無錫市共有35000余名學(xué)生參加中考體育測試,為了了解九年級男生立定跳遠(yuǎn)的成績,從某校隨機(jī)抽取了50名男生的測試成績,根
據(jù)測試評分標(biāo)準(zhǔn),將他們的得分按優(yōu)秀、良好、及格、不及格(分別用A、B、C、D
表示)四個(gè)等級進(jìn)行統(tǒng)計(jì),并繪制成如圖所示的扇形圖和統(tǒng)計(jì)表:
請你根據(jù)以上圖表提供的信息,解答下列問題:
【1】(1) m= ,n= ,x= ,y= ;
【2】(2)在扇形圖中,C等級所對應(yīng)的圓心角是 度;
【3】(3)如果該校九年級共有500名男生參加了立定跳遠(yuǎn)測試,那么請你估計(jì)這些男生成績等級達(dá)到優(yōu)秀和良好的共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知線段,,線段在線段上運(yùn)動,、分別是、的中點(diǎn).
(1)若,則______;
(2)當(dāng)線段在線段上運(yùn)動時(shí),試判斷的長度是否發(fā)生變化?如果不變請求出的長度,如果變化,請說明理由;
(3)我們發(fā)現(xiàn)角的很多規(guī)律和線段一樣,如圖②已知在內(nèi)部轉(zhuǎn)動,、分別平分和,則、和有何數(shù)量關(guān)系,請直接寫出結(jié)果不需證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com