【題目】閱讀下面的文字,解答問題:大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,但是由于1<<2,所以的整數(shù)部分為1,將減去其整數(shù)部分1,差就是小數(shù)部分,根據(jù)以上的內(nèi)容,解答下面的問題:
(1)的整數(shù)部分是______,小數(shù)部分是______;
(2)的整數(shù)部分是______,小數(shù)部分是_____;
(3)若設(shè)整數(shù)部分是x,小數(shù)部分是y,求x﹣y的值.
【答案】解:(1)2,;(2)2,;(3).
【解析】
(1)估算出的取值范圍即可得答案;(2)先估算出的取值范圍,再得出1+的取值范圍,即可得答案;(3)先估算出2+的取值范圍,得出x、y的值,再代入求值即可.
(1)∵4<5<9,
∴<<,即2<<3,
∴的整數(shù)部分是2,小數(shù)部分是-2.
故答案為:2,
(2)∵1<2<4,
∴1<<2,
∴2<1+<3,
∴1+的整數(shù)部分是2,小數(shù)部分是-1.
故答案為:2,
(3)∵1<3<4,
∴1<<2,
∴3<2+<4,
∵整數(shù)部分是x,小數(shù)部分是y,
∴x=3,y=-1,
∴x﹣y=3-(-1)=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】其工廠甲.乙兩個(gè)部門各有員工人,為了解這兩個(gè)部門員工的生產(chǎn)技能情況,進(jìn)行了抽樣調(diào)查,過程如下,請(qǐng)補(bǔ)充完整.
收集數(shù)據(jù)
從甲、乙兩個(gè)部門各隨機(jī)抽取名員工進(jìn)行了生產(chǎn)技能測(cè)試,測(cè)試成績(百分制)如下:
甲:78 86 74 81 75 76 87 70 75 90
75 79 81 70 74 80 86 69 83 77
乙:93 73 88 81 72 81 94 83 77 83
80 81 70 81 73 78 82 80 70 40
整理、描述數(shù)據(jù)
(1)按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):
成績?nèi)藬?shù)部門 | ||||||
甲 | ||||||
乙 |
(說明:成績分及以上為生產(chǎn)技能優(yōu)秀,分為生產(chǎn)技能良好,分為生產(chǎn)技能合格,分以下為生產(chǎn)技能不合格)
(2)若按照甲部門的樣本數(shù)據(jù),在列頻數(shù)分布表時(shí),若取組距為,則這小組的頻數(shù)為 ,頻率為 ;
(3)若按照乙部門的樣本數(shù)據(jù)畫出扇形統(tǒng)計(jì)圖,則表示生產(chǎn)技能優(yōu)秀部分的圓心角是 度;
得出結(jié)論:
(4)估計(jì)乙部門生產(chǎn)技能優(yōu)秀的員工人數(shù)為 ;
(5)可以推斷出部門員工的生產(chǎn)技能水平較高,你的理由為 (說出一條即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知DE∥BC,∠3=∠B,則∠1+∠2=180°.下面是王寧同學(xué)的思考過程,請(qǐng)你在括號(hào)內(nèi)填上理由、依據(jù)或內(nèi)容。
思考過程
因?yàn)?/span> DE∥BC(已知)
所以∠3=∠EHC ( )
因?yàn)?/span>∠3=∠B(已知)
所以∠B=∠EHC ( )
所以 AB∥EH ( )
∠2+ ( )=180°( )
因?yàn)?/span>∠1=∠4( )
所以∠1+∠2=180°(等量代換)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一副三角尺按圖①所示的方式疊放在一起,現(xiàn)將含45°角的三角尺ADE固定不動(dòng),把含30°角的三角尺ABC繞頂點(diǎn)A順時(shí)針旋轉(zhuǎn)角α(α=∠BAD且0°<α<180°),使兩塊三角尺至少有一組邊平行.
(1)如圖②,當(dāng)α=________°時(shí),BC∥DE.
(2)請(qǐng)你分別在圖③,④中,各畫一種符合要求的圖形,標(biāo)出α,并完成下列各題.
圖③中,當(dāng)α=________°時(shí),________∥________;
圖④中,當(dāng)α=________°時(shí),________∥________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題10分)如圖,已知A(-4,2)、B(n,-4)是一次函數(shù)的圖象與反比例函數(shù)的圖象的兩個(gè)交點(diǎn).
(1)求此反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠為了擴(kuò)大生產(chǎn),決定購買8臺(tái)機(jī)器用于生產(chǎn)零件,現(xiàn)有甲、乙兩種機(jī)器可供選擇,其中甲型機(jī)器每日生產(chǎn)零件100個(gè),乙型機(jī)器每日生產(chǎn)零件60個(gè),經(jīng)調(diào)查,購買3臺(tái)甲型機(jī)器和2臺(tái)乙型機(jī)器共需要31萬元,購買一臺(tái)甲型機(jī)器比購買一臺(tái)乙型機(jī)器多2萬元.
(1)求甲、乙兩種機(jī)器每臺(tái)各多少萬元?
(2)如果工廠買機(jī)器的預(yù)算資金不超過46萬元,那么該工廠有哪幾種購買方案?
(3)在(2)的條件下,如果要求該工廠購進(jìn)的8臺(tái)機(jī)器生產(chǎn)零件的日產(chǎn)量不低于550個(gè),那么為了節(jié)約資金,應(yīng)該選擇哪種方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為開展以“感恩和珍愛生命”為主題的教育活動(dòng),某學(xué)校結(jié)合學(xué)生實(shí)際,調(diào)查了部分學(xué)生是否知道母親生日的情況,繪制了圖①、圖②的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中信息,解答下列問題
(1)求本次被調(diào)查學(xué)生的人數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若全校共有2700名學(xué)生,請(qǐng)你估計(jì)全校有多少名學(xué)生知道母親的生日;
(3)通過對(duì)以上數(shù)據(jù)的分析,你能得知哪些信息?請(qǐng)你寫出一條.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在平面直角坐標(biāo)系中,拋物線交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,且對(duì)稱軸為x=﹣2,點(diǎn)P(0,t)是y軸上的一個(gè)動(dòng)點(diǎn).
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo).
(2)如圖1,當(dāng)0≤t≤4時(shí),設(shè)△PAD的面積為S,求出S與t之間的函數(shù)關(guān)系式;S是否有最小值?如果有,求出S的最小值和此時(shí)t的值.
(3)如圖2,當(dāng)點(diǎn)P運(yùn)動(dòng)到使∠PDA=90°時(shí),Rt△ADP與Rt△AOC是否相似?若相似,求出點(diǎn)P的坐標(biāo);若不相似,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)G是正方形ABCD對(duì)角線CA的延長線上任意一點(diǎn),以線段AG為邊作一個(gè)正方形AEFG,線段EB和GD相交于點(diǎn)H.
(1)求證:EB=GD且EB⊥GD;
(2)若AB=2,AG=,求的長;
(3)如圖2,正方形AEFG繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)連結(jié)DE,BG,與的面積之差是否會(huì)發(fā)生變化?若不變,請(qǐng)求出與的面積之差;若變化,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com