【題目】如圖,矩形ABCD的頂點A在第一象限,AB∥x軸,AD∥y軸,且對角線的交點與原點O重合.在邊AB從小于AD到大于AD的變化過程中,若矩形ABCD的周長始終保持不變,則經(jīng)過動點A的反比例函數(shù)y= (k≠0)中k的值的變化情況是(
A.一直增大
B.一直減小
C.先增大后減小
D.先減小后增大

【答案】C
【解析】解:設(shè)矩形ABCD中,AB=2a,AD=2b. ∵矩形ABCD的周長始終保持不變,
∴2(2a+2b)=4(a+b)為定值,
∴a+b為定值.
∵矩形對角線的交點與原點O重合
∴k= AB AD=ab,
又∵a+b為定值時,當(dāng)a=b時,ab最大,
∴在邊AB從小于AD到大于AD的變化過程中,k的值先增大后減。
故選:C.
設(shè)矩形ABCD中,AB=2a,AD=2b,由于矩形ABCD的周長始終保持不變,則a+b為定值.根據(jù)矩形對角線的交點與原點O重合及反比例函數(shù)比例系數(shù)k的幾何意義可知k= AB AD=ab,再根據(jù)a+b一定時,當(dāng)a=b時,ab最大可知在邊AB從小于AD到大于AD的變化過程中,k的值先增大后減。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】過三點A(2,2),B(6,2),C(4,5)的圓的圓心坐標(biāo)為(
A.(4,
B.(4,3)
C.(5,
D.(5,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD和正△AEF都內(nèi)接于⊙O,EF與BC、CD分別相交于點G、H,則 的值是(
A.
B.
C.
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景
已知在△ABC中,AB邊上的動點D由A向B運動(與A,B不重合),點E與點D同時出發(fā),由點C沿BC的延長線方向運動(E不與C重合),連接DE交AC于點F,點H是線段AF上一點.

(1)初步嘗試
如圖1,若△ABC是等邊三角形,DH⊥AC,且點D,E的運動速度相等.
求證:HF=AH+CF.
小五同學(xué)發(fā)現(xiàn)可以由以下兩種思路解決此問題:
思路一:過點D作DG∥BC,交AC于點G,先證GH=AH,再證GF=CF,從而證得結(jié)論成立;
思路二:過點E作EM⊥AC,交AC的延長線于點M,先證CM=AH,再證HF=MF,從而證得結(jié)論成立.
請你任選一種思路,完整地書寫本小題的證明過程(如用兩種方法作答,則以第一種方法評分);
(2)類比探究
如圖2,若在△ABC中,∠ABC=90°,∠ADH=∠BAC=30°,且D,E的運動速度之比是 :1,求 的值;
(3)延伸拓展
如圖3,若在△ABC中,AB=AC,∠ADH=∠BAC=36°,記 =m,且點D,E運動速度相等,試用含m的代數(shù)式表示 (直接寫出結(jié)果,不必寫解答過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,⊙O的半徑為r(r>0),若點P′在射線OP上,滿足OP′OP=r2 , 則稱點P′是點P關(guān)于⊙O的“反演點”. 如圖2,⊙O的半徑為4,點B在⊙O上,∠BOA=60°,OA=8,若點A′,B′分別是點A,B關(guān)于⊙O的反演點,求A′B′的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算下列各題
(1)計算: +2×(﹣5)+(﹣3)2+20140
(2)化簡:(a+1)2+2(1﹣a).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)y= ,當(dāng)x=2時,y=3.
(1)求m的值;
(2)當(dāng)3≤x≤6時,求函數(shù)值y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l平行x軸,交y軸于點A,第一象限內(nèi)的點B在l上,連結(jié)OB,動點P滿足∠APQ=90°,PQ交x軸于點C.
(1)當(dāng)動點P與點B重合時,若點B的坐標(biāo)是(2,1),求PA的長.
(2)當(dāng)動點P在線段OB的延長線上時,若點A的縱坐標(biāo)與點B的橫坐標(biāo)相等,求PA:PC的值.
(3)當(dāng)動點P在直線OB上時,點D是直線OB與直線CA的交點,點E是直線CP與y軸的交點,若∠ACE=∠AEC,PD=2OD,求PA:PC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,∠B=60°,將△ABC繞點A逆時針旋轉(zhuǎn)60° , 點B、C分別落在點B'、C'處,聯(lián)結(jié)BC'與AC邊交于點D,那么 =

查看答案和解析>>

同步練習(xí)冊答案