設ABCD是邊長為1的正方形,點M在AB上,且AM:MB=1:2,N在AD上,AN:ND=2:1,作正方形ABCD的外接正方形A′B′C′D′,使四邊分別過A、B、C、D,且A′D′∥MN,則正方形的面積A′B′C′D′為________.


分析:先畫圖,可證明△ADD′∽△NAM,設DD′=x,則D′A=2x,由勾股定理求出x的長,由比例式得出A′A=,AD′=,從而求出正方形的面積A′B′C′D′.
解答:解:如圖,
可證明△ADD′∽△NAM,則DD′:D′A=MA:AN=1:2,
設DD′=x,則D′A=2x,x2+(2x)2=12
解得x=,則A′A=,AD′=
∴S正方形A′B′C′D′=(+2=
故答案為:
點評:本題考查了相似三角形的判定和性質以及正方形的性質,此題綜合性強,難度較大.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

設ABCD是邊長為1的正方形,點M在AB上,且AM:MB=1:2,N在AD上,AN:ND=2:1,作正方形ABCD的外接正方形A′B′C′D′,使四邊分別過A、B、C、D,且A′D′∥MN,則正方形的面積A′B′C′D′為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知四邊形ABCD是邊長為4的正方形,以AB為直徑在正方形內(nèi)作半圓,P是半圓上的動點(不與點A、B重合),連接PA、PB、PC、PD.
精英家教網(wǎng)
(1)如圖①,當PA的長度等于
 
時,∠PAD=60°;當PA的長度等于
 
時,△PAD是等腰三角形;
(2)如圖②,以AB邊所在直線為x軸、AD邊所在直線為y軸,建立如圖所示的直角坐標系(點A即為原點O),把△PAD、△PAB、△PBC的面積分別記為S1、S2、S3.設P點坐標為(a,b),試求2S1S3-S22的最大值,并求出此時a、b的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•槐蔭區(qū)二模)如圖,四邊形ABCD是邊長為2的正方形,現(xiàn)有兩點E、F,分別從點D、點A同時出發(fā),點E沿線段DA以1個單位長度每秒的速度向點A運動,點F沿折線A-B-C以2個單位長度每秒的速度向點C運動.設點E離開點D的時間為t秒.
(1)t=
2
3
時,求證:△AEF為等腰直角三角形;
(2)當t為何值時,線段EF與DC平行;
(3)當1≤t<2時,設EF與AC相交于點M,連接DM并延長交AB于點N,求
AN
NB
的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

設ABCD是邊長為1的正方形,點M在AB上,且AM:MB=1:2,N在AD上,AN:ND=2:1,作正方形ABCD的外接正方形A′B′C′D′,使四邊分別過A、B、C、D,且A′D′MN,則正方形的面積A′B′C′D′為______.

查看答案和解析>>

同步練習冊答案