下表給出了一個二次函數(shù)的一些取值情況:
x…024
y…3-13
(1)求這個二次函數(shù)的解析式,并求出其圖象與x軸的交點(diǎn)坐標(biāo);
(2)請在如圖所示的坐標(biāo)系中畫出這個二次函數(shù)的圖象;
(3)根據(jù)其圖象寫出x取何值時,y>0.
(1)由已知,得
該二次函數(shù)所表示的拋物線經(jīng)過點(diǎn)(0,3),(4,3),可知該拋物線的對稱軸是x=2.
又點(diǎn)(2,-1)在該拋物線上,
由此可以設(shè)該二次函數(shù)的解析式為:y=a(x-2)2-1(a≠0).
代入點(diǎn)(0,3),求得a=1.
所以,該拋物線的解析式是y=(x-2)2-1.
令a(x-2)2-1=0,解得x1=1,x2=3,
所以,該二次函數(shù)圖象與x軸的交點(diǎn)坐標(biāo)是(1,0),(3,0).

(2)圖象如圖所示.

(3)根據(jù)圖象知,當(dāng)x<1或x>3時,y>0.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=
1
2
x2+bx+c的圖象經(jīng)過點(diǎn)A(-3,6),并且與x軸交于點(diǎn)B(-1,0)和點(diǎn)C,頂點(diǎn)為P.
(1)求這個二次函數(shù)解析式;
(2)設(shè)D為線段OC上的點(diǎn),滿足∠DPC=∠BAC,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線y=-
1
2
x+b(b>0)
分別交x軸,y軸于A,B兩點(diǎn),以O(shè)A,OB為邊作矩形OACB,D為BC的中點(diǎn).以M(4,0),N(8,0)為斜邊端點(diǎn)作等腰直角三角形PMN,點(diǎn)P在第一象限,設(shè)矩形OACB與△PMN重疊部分的面積為S.
(1)求點(diǎn)P的坐標(biāo).
(2)若點(diǎn)P關(guān)于x軸的對稱點(diǎn)為P′,試求經(jīng)過M、N、P′三點(diǎn)的拋物線的解析式.
(3)當(dāng)b值由小到大變化時,求S與b的函數(shù)關(guān)系式.
(4)若在直線y=-
1
2
x+b(b>0)
上存在點(diǎn)Q,使∠OQM等于90°,請直接寫出b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線y=-
1
2
x+1
交坐標(biāo)軸于A、B點(diǎn),以線段AB為邊向上作正方形ABCD,過點(diǎn)A、D、C的拋物線與直線的另一個交點(diǎn)為E.
(1)求點(diǎn)C、D的坐標(biāo)
(2)求拋物線的解析式
(3)若拋物線與正方形沿射線AB下滑,直至點(diǎn)C落在x軸上時停止,求拋物線上C、E兩點(diǎn)間的拋物線所掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,拋物線y1=a(x+2)2-3與y2=
1
2
(x-3)2+1交于點(diǎn)A(1,3),過點(diǎn)A作x軸的平行線,分別交兩條拋物線于點(diǎn)B,C.則以下結(jié)論:
①無論x取何值,y2的值總是正數(shù);
②a=1;
③當(dāng)x=0時,y2-y1=4
④2AB=3AC.
其中正確結(jié)論是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線y=
1
2
x+1與拋物線y=ax2+bx-3交于A、B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B的縱坐標(biāo)為3.點(diǎn)P是直線AB下方的拋物線上一動點(diǎn)(不與A、B點(diǎn)重合),過點(diǎn)P作x軸的垂線交直線AB于點(diǎn)C,作PD⊥AB于點(diǎn)D.
(1)求a、b及sin∠ACP的值;
(2)設(shè)點(diǎn)P的橫坐標(biāo)為m;
①用含有m的代數(shù)式表示線段PD的長,并求出線段PD長的最大值;
②連接PB,線段PC把△PDB分成兩個三角形,是否存在適合的m的值,使這兩個三角形的面積之比為9:10?若存在,直接寫出m的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,?ABCO的頂點(diǎn)O在原點(diǎn),點(diǎn)A的坐標(biāo)為(-2,0),點(diǎn)B的坐標(biāo)為(0,2),點(diǎn)C在第一象限.
(1)直接寫出點(diǎn)C的坐標(biāo);
(2)將?ABCO繞點(diǎn)O逆時針旋轉(zhuǎn),使OC落在y軸的正半軸上,如圖②,得□DEFG(點(diǎn)D與點(diǎn)O重合).FG與邊AB、x軸分別交于點(diǎn)Q、點(diǎn)P.設(shè)此時旋轉(zhuǎn)前后兩個平行四邊形重疊部分的面積為S0,求S0的值;
(3)若將(2)中得到的?DEFG沿x軸正方向平移,在移動的過程中,設(shè)動點(diǎn)D的坐標(biāo)為(t,0),?DEFG與?ABCO重疊部分的面積為S.寫出S與t(0<t≤2)的函數(shù)關(guān)系式.(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知矩形紙片OABC的長為4,寬為3,以長OA所在的直線為x軸,O為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系;點(diǎn)P是OA邊上的動點(diǎn)(與點(diǎn)O、A不重合),現(xiàn)將△POC沿PC翻折得到△PEC,再在AB邊上選取適當(dāng)?shù)狞c(diǎn)D,將△PAD沿PD翻折,得到△PFD,使得直線PE、PF重合.
(1)若點(diǎn)E落在BC邊上,如圖①,求點(diǎn)P、C、D的坐標(biāo),并求過此三點(diǎn)的拋物線的函數(shù)關(guān)系式;
(2)若點(diǎn)E落在矩形紙片OABC的內(nèi)部,如圖②,設(shè)OP=x,AD=y,當(dāng)x為何值時,y取得最大值?
(3)在(1)的情況下,過點(diǎn)P、C、D三點(diǎn)的拋物線上是否存在點(diǎn)Q,使△PDQ是以PD為直角邊的直角三角形?若不存在,說明理由;若存在,求出點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某隧道根據(jù)地質(zhì)結(jié)構(gòu)要求其橫截面要建成拋物線拱形,計劃路面水平寬度AB=12m,根據(jù)施工需要,選取AB的中點(diǎn)D為支撐點(diǎn),搭一個正三角形支架ADC,C點(diǎn)在拋物線上(如圖所示),過C豎一根立柱CO⊥AB于O.
(1)求立柱CO的長度;
(2)以O(shè)點(diǎn)為坐標(biāo)原點(diǎn),AB所在的直線為橫坐標(biāo)軸,自己畫出平面直角坐標(biāo)系,寫出A、B、C三點(diǎn)的坐標(biāo)(坐標(biāo)軸上的一個長度單位為1m);
(3)求經(jīng)過A、B、C三點(diǎn)的拋物線方程;
(4)請幫助施工技術(shù)員計算該拋物線拱形的高.

查看答案和解析>>

同步練習(xí)冊答案