如圖,在直角坐標(biāo)系中,拋物線軸交于點(diǎn)D(0,3).

1.直接寫(xiě)出的值;

2.若拋物線與軸交于A、B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右邊),頂點(diǎn)為C點(diǎn),求直線BC的解析式;

3.已知點(diǎn)P是直線BC上一個(gè)動(dòng)點(diǎn),

①當(dāng)點(diǎn)P在線段BC上運(yùn)動(dòng)時(shí)(點(diǎn)P不與B、C重合),過(guò)點(diǎn)P作PE⊥軸,垂足為E,連結(jié)BE.設(shè)點(diǎn)P的坐標(biāo)為(),△PBE的面積為,求的函數(shù)關(guān)系式,寫(xiě)出自變量的取值范圍,并求出的最大值;

②試探索:在直線BC上是否存在著點(diǎn)P,使得以點(diǎn)P為圓心,半徑為的⊙P,既與拋物線的對(duì)稱軸相切,又與以點(diǎn)C為圓心,半徑為1的⊙C相切?如果存在,試求的值,并直接寫(xiě)出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

 

 

1..……………………………(2分)

2.由(1)知拋物線為:

∴頂點(diǎn)C坐標(biāo)為(1,4)    ……………………………(3分)

   ∴ B(3,0)……………………(4分)

設(shè)直線BC解析式為:),把B、C兩點(diǎn)坐標(biāo)代入,

解得

∴直線BC解析式為.……………………(5分)

3.①∵點(diǎn)P(x,y)在的圖象上,

∴PE,OE  ……………………(6分)

PE·OE

………………(7分)

 

符合,

∴當(dāng)時(shí),s取得最大值,最大值為.……(8分)

② 答:存在.

如圖,設(shè)拋物線的對(duì)稱軸交x軸于點(diǎn)F,則CF=4,BF=2.

 過(guò)P作PQ⊥CF于Q,則Rt△CPQ∽R(shí)t△CBF

  ∴CQ=2r……………(9分)

當(dāng)⊙P與⊙C外切時(shí),CP

解得舍去).……………(10分)

此時(shí).……………………(11分)

當(dāng)⊙P與⊙C內(nèi)切時(shí),CP

解得舍去).……………………(12分)

此時(shí)

∴當(dāng)時(shí),⊙P與⊙C相切.

點(diǎn)P的坐標(biāo)為,

.……………………(13分)

解析:略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-3,0),B(0,4),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形①、②、③、④…,則三角形⑦的直角頂點(diǎn)的坐標(biāo)為
(24,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為(3,4),將OP繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到線段OP′.
(1)在圖中畫(huà)出線段OP′;
(2)求P′的坐標(biāo)和
PP′
的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)系中,O為原點(diǎn).反比例函數(shù)y=
6
x
的圖象經(jīng)過(guò)第一象限的點(diǎn)A,點(diǎn)A的縱坐標(biāo)是橫坐標(biāo)的
3
2
倍.
(1)求點(diǎn)A的坐標(biāo);
(2)如果經(jīng)過(guò)點(diǎn)A的一次函數(shù)圖象與x軸的負(fù)半軸交于點(diǎn)B,AC⊥x軸于點(diǎn)C,若△ABC的面積為9,求這個(gè)一次函數(shù)的解析式.
(3)點(diǎn)D在反比例函數(shù)y=
6
x
的圖象上,且點(diǎn)D在直線AC的右側(cè),作DE⊥x軸于點(diǎn)E,當(dāng)△ABC與△CDE相似時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-6,0),B(-4,6),C(0,2).畫(huà)出△ABC的兩個(gè)位似圖形△A1B1C1,△A2B2C2,同時(shí)滿足下列兩個(gè)條件:
(1)以原點(diǎn)O為位似中心;
(2)△A1B1C1,△A2B2C2與△ABC的面積比都是1:4.(作出圖形,保留痕跡,標(biāo)上相應(yīng)字母)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-4,0),B(0,3),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面積是
6
6
;
(2)三角形(2013)的直角頂點(diǎn)的坐標(biāo)是
(8052,0)
(8052,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案