8.如圖,BC⊥CA,BC=CA,DC⊥CE,DC=CE,直線BD與AE交于點(diǎn)F,交AC于點(diǎn)G,連接CF.
(1)求證:△ACE≌△BCD;
(2)求證:BF⊥AE;
(3)請判斷∠CFE與∠CAB的大小關(guān)系并說明理由.

分析 (1)根據(jù)垂直的定義得到∠ACB=∠DCE=90°,由角的和差得到∠BCD=∠ACE,即可得到結(jié)論;
(2)根據(jù)全等三角形的性質(zhì)得到∠CBD=∠CAE,根據(jù)對頂角的性質(zhì)得到∠BGC=∠AGE,由三角形的內(nèi)角和即可得到結(jié)論;
(3)過C作CH⊥AE于H,CI⊥BF于I,根據(jù)全等三角形的性質(zhì)得到AE=BD,S△ACE=S△BCD,根據(jù)三角形的面積公式得到CH=CI,于是得到CF平分∠BFH,推出△ABC是等腰直角三角形,即可得到結(jié)論.

解答 證明:(1)∵BC⊥CA,DC⊥CE,
∴∠ACB=∠DCE=90°,
∴∠BCD=∠ACE,
在△BCD與△ACE中,
$\left\{\begin{array}{l}{BC=CA}\\{∠ACD=∠ACE}\\{CD=CE}\end{array}\right.$,
∴△ACE≌△BCD;

(2)∵△BCD≌△ACE,
∴∠CBD=∠CAE,
∵∠BGC=∠AGE,
∴∠AFB=∠ACB=90°,
∴BF⊥AE;

(3)∠CFE=∠CAB,
過C作CH⊥AE于H,CI⊥BF于I,∵△BCD≌△ACE,
∴AE=BD,S△ACE=S△BCD,
∴CH=CI,
∴CF平分∠BFH,
∵BF⊥AE,
∴∠BFH=90°,∠CFE=45°,
∵BC⊥CA,BC=CA,
∴△ABC是等腰直角三角形,
∴∠CAB=45°,
∴∠CFE=∠CAB.

點(diǎn)評 本題考查了全等三角形的判定和性質(zhì),角平分線的定義,角平分線的性質(zhì),等腰直角三角形的性質(zhì),正確的作出輔助線是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.綜合與探究:如圖,拋物線y=-$\frac{1}{4}$x2+bx+c與x軸交于A(-1,0),B(5,0)兩點(diǎn),過點(diǎn)B作線段BC⊥x軸,交直線y=-2x于點(diǎn)C.

(1)求該拋物線的解析式;
(2)求點(diǎn)B關(guān)于直線y=-2x的對稱點(diǎn)B′的坐標(biāo),判定點(diǎn)B′是否在拋物線上,并說明理由;
(3)點(diǎn)P是拋物線上一動(dòng)點(diǎn),過點(diǎn)P作y軸的平行線,交線段B′C于點(diǎn)D,是否存在這樣的點(diǎn)P,使四邊形PBCD是平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.如圖,△ABC的各頂點(diǎn)的坐標(biāo)分別為A(-3,2),B(2,1),C(3,5)
(1)畫出△ABC關(guān)于x軸對稱的△A1B1C1
(2)分別寫出點(diǎn)A、B、C關(guān)于y軸對稱的點(diǎn)A2、B2、C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.如圖,直線AB,CD相交于點(diǎn)O,OA平分∠EOC,且∠EOC:∠EOD=2:3.
(1)求∠BOD的度數(shù);
(2)如圖2,點(diǎn)F在OC上,直線GH經(jīng)過點(diǎn)F,F(xiàn)M平分∠OFG,且∠MFH-∠BOD=90°,求證:OE∥GH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.已知:點(diǎn)O為直線AB上一點(diǎn),∠COD=90°,射線OE平分∠AOD.

(1)如圖①所示,若∠COE=20°,則∠BOD=40°.
(2)若將∠COD繞點(diǎn)O旋轉(zhuǎn)至圖②的位置,試判斷∠BOD和∠COE的數(shù)量關(guān)系,并說明理由;
(3)若將∠COD繞點(diǎn)O旋轉(zhuǎn)至圖③的位置,∠BOD和∠COE的數(shù)量關(guān)系是否發(fā)生變化?并請說明理由.
(4)若將∠COD繞點(diǎn)O旋轉(zhuǎn)至圖④的位置,繼續(xù)探究∠BOD和∠COE的數(shù)量關(guān)系,請直接寫出∠BOD和∠COE之間的數(shù)量關(guān)系:∠BOD+2∠COE=360°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.已知關(guān)于x的方程2x+5=1和a(x+3)=$\frac{1}{2}$a+x的解相同,求a2-$\frac{a}{2}$+1的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

20.濰坊冬季里某一天最高氣溫是7℃,最低氣溫是零下4℃,這一天濰坊最高氣溫與最低氣溫的溫差是11℃.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

17.某人騎自行車從甲地到乙地,到達(dá)乙地他馬上返回甲地.如圖反映的是他離甲地的距離s(km)及他騎車的時(shí)間t(h)之間的關(guān)系,則下列說法正確的是( 。
A.甲、乙兩地之間的距離為60km
B.他從甲地到乙地的平均速度為30km/h
C.當(dāng)他離甲地15km時(shí),他騎車的時(shí)間為1h
D.若他從乙地返回甲地的平均速度為10km/h,則點(diǎn)A表示的數(shù)字為5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

18.如圖,在△ABC中,∠C=90°,BD平分∠ABC交AC于D,DE是AB的垂直平分線,若AD=3,則AC等于(  )
A.4B.4.5C.5D.6

查看答案和解析>>

同步練習(xí)冊答案