【題目】如圖,已知在△ABC中,BC=AC,以BC為直徑的⊙O與邊AB、AC分別交于點D、E,DF⊥AC于點F.
(1)求證:點D是AB的中點;
(2)判斷DF與⊙O的位置關系,并證明你的結論;
(3)若⊙O的半徑為10,sinB=,求陰影部分面積.
【答案】(1)證明見解析(2)DF與⊙O相切(3)
【解析】
(1)連接CD,根據直徑所對的圓周角為90°得∠BDC=90°,再由等腰三角形的三線合一得出結論;
(2)根據中位線的定義可以知道:OD是△ABC的中位線,則OD∥AC,因為DF⊥AC,所以DF⊥OD,得出DF與 O相切;
(3)如圖3,連接OE、BE,先根據特殊的三角函數值求出∠ABC=60°,所以△ABC是等邊三角形,求出直角△BEC各邊的長,就可以求其面積,根據中線的性質可知△OEC的面積就是△BEC面積的-半,所求的陰影面積是扇形面積與△OEC的面積的差.
(1)連接CD
∵BC是⊙O的直徑,
∴∠BDC=90°
又∵AC=BC,∴點D是AB的中點;
(2)DF與⊙O相切,
如圖2,連接OD
∵O是BC的中點,點D是AB的中點,
∴OD是△ABC的中位線,
∴OD∥AC
又∵DF⊥AC,
∴DF⊥OD,且OD是半徑
∴DF與⊙O相切;
(3)如圖3,連接OE,作OM⊥AC
∵sin∠ABC=,
∴∠ABC=60°
又∵AC=BC,
∴△ABC是等邊三角形
∴∠C=60°
又∵OE=OC
∴△OEC是等邊三角形
∴EC=OC=10,∠EOC=60°
∵OM⊥AB,∠ACB=60°
∴MC=5,OM=MC=5
∴S△OEC=×EC×OM=25
∴S陰影=S扇形OEC﹣S△OEC=﹣25=﹣25
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC 中,∠A=∠B=30°,E,F 在 AB 上,∠ECF=60°.
(1)畫出△BCF 繞點 C 順時針旋轉 120°后的△ACK;
(2)在(1)中,若 AE2+ EF2= BF2,求證 BF= CF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在正方形ABCD中,點P在射線AC上,作點P關于直線CD的對稱點Q,作射線BQ交射線DC于點E,連接BP.
(1)當點P在線段AC上時,如圖1.
①依題意補全圖1;
②若EQ=BP,則∠PBE的度數為 ,并證明;
(2)當點P在線段AC的延長線上時,如圖2.若EQ=BP,正方形ABCD的邊長為1,請寫出求BE長的思路.(可以不寫出計算結果)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB、CD相交于點O,∠AOC=30°,⊙P的半徑為1cm,且OP=6cm,如果⊙P以1cm/s的速度沿由A向B的方向移動,那么多少秒后⊙P與直線CD相切( )
A. 4或8 B. 4或6 C. 8 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AD是BC邊上的中線,AE是BC邊上的高.
(1)若∠ACB=100°,求∠CAE的度數;
(2)若S△ABC=12,CD=4,求高AE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1是甲、乙兩個圓柱形水槽的軸截面示意圖.乙槽中有一圓柱形鐵塊放在其中(圓柱形鐵塊的下底面完全落在水槽底面上),現(xiàn)將甲槽中的水勻速注人乙槽.甲、乙兩個水槽中水的深度與注水時間(分鐘)之間的關系如圖2所示.根據圖象提供的信息,解答下列問題:
(1)圖2中折線表示 槽中的水的深度與注水時間的關系,線段表示 槽中的水的深度與注水時間的關系(填“甲”或“乙”),點的縱坐標表示的實際意義是 ;
(2)當時,分別求出和與之間的函數關系式;
(3)注水多長時間時,甲、乙兩個水槽中的水深度相同?
(4)若乙槽底面積為平方厘米(壁厚不計) ,求乙槽中鐵塊的體積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線與x軸的交點坐標分別為A(1,0),B(x2,0)(點B在點A的右側),其對稱軸是x=3,該函數有最小值是﹣2.
(1)求二次函數解析式;
(2)在圖1上作平行于x軸的直線,交拋物線于C(x3,y3),D(x4,y4),求x3+x4的值;
(3)將(1)中函數的部分圖象(x>x2)向下翻折與原圖象未翻折的部分組成圖象“G”,如圖2,在(2)中平行于x軸的直線取點E(x5,y5)、(x4<x5),結合函數圖象求x3+x4+x5的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△PDC是⊙O的內接三角形,CP=CD,若將△PCD繞點P順時針旋轉,當點C剛落在⊙O上的A處時,停止旋轉,此時點D落在點B處.
(1)求證:PB與⊙O相切;
(2)當PD=2,∠DPC=30°時,求⊙O的半徑長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】A,B兩城相距600千米,甲、乙兩車同時從A城出發(fā)駛向B城,甲車到達B城后立即返回.如圖是它們離A城的距離y(千米)與行駛時間 x(小時)之間的函數圖象.
(1)求甲車行駛過程中y與x之間的函數解析式,并寫出自變量x的取值范圍;
(2)當它們行駛了7小時時,兩車相遇,求乙車的速度及乙車行駛過程中y與x之間的函數解析式,并寫出自變量x的取值范圍;
(3)當兩車相距100千米時,求甲車行駛的時間.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com