若三角形的三邊長滿足關系式,則這個三角形的形狀為(     )
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

58、若三角形的三邊長是a,b,c,且滿足a2+2b2+c2-2ab-2bc=0,試判斷三角形的形狀.
小明是這樣做的.
∵a2+2b2+c2-2ab-2bc=0.
∴(a2-2ab+b2)+(b2-2bc+c2)=0,
即(a-b)2+(b-c)2=0.
∵(a-b)2≥0,(b-c)2≥0,
∴a=b,b=c即a=b=C、
∴該三角形是等邊三角形.
仿照小明的解法解答問題:
已知:a,b,c為三角形的三條邊,且a2+b2+c2-ab-bc-ac=0,試判斷三角形的形狀.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若三角形的三邊長滿足關系式|a-3|+(a+b-7)2+
5-c
=0
,則這個三角形的形狀為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

九年級上冊的教材第118頁有這樣一道習題:
“在一塊三角形余料ABC中,它的邊BC=120mm,高線AD=80mm.要把它加工成正方形零件(如圖),使正方形的一邊在BC上,其余兩個頂點分別在AB,AC上.問加工成的正方形零件的邊長為多少mm?”
(1)請你解答上題;
(2)若將上題圖中的正方形PQMN改為矩形,其余條件不變,求矩形PQMN的面積S的最大值;
(3)我們把上面習題中的正方形PQMN叫做“BC邊上的△ABC的內(nèi)接正方形”,若在習題的條件下,又知AB=150mm,AC=100mm,請分別寫出AB邊上的△ABC的內(nèi)接正方形的邊長和AC邊上的△ABC的內(nèi)接正方形的邊長(不必寫出過程,只要直接寫出答案即可,結果精確到1mm);
(4)結合第(1)、(3)題,若三角形的三邊長分別為a,b,c,各邊上的高分別為ha,hb,hc,要使a邊上的三角形內(nèi)接正方形的面積最大,請寫出a與ha必須滿足的條件(不必寫出過程).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

若三角形的三邊長滿足關系式數(shù)學公式,則這個三角形的形狀為________.

查看答案和解析>>

同步練習冊答案