如圖,直角三角形ABC中,∠ABC=90°,B(2,0),經(jīng)過A、B、C三點(diǎn)的拋物線y=x2-2x+k與y軸交于點(diǎn)A,與x軸的另一個(gè)交點(diǎn)為D.
(1)求此拋物線的解析式;
(2)⊙B是以點(diǎn)B為圓心,OB長為半徑的圓,以點(diǎn)D為圓心的⊙D與直線BC相切,請(qǐng)你通過計(jì)算說明:⊙B與⊙D的位置關(guān)系;
(3)在直線AD下方的拋物線上是否存在一點(diǎn)P,使四邊形APDC的面積最大?若存在,請(qǐng)你求出點(diǎn)P的坐標(biāo)和四邊形APDC面積的最大值;若不存在,請(qǐng)你說明理由.

【答案】分析:(1)直接將點(diǎn)B的坐標(biāo)代入拋物線的解析式中,即可確定待定系數(shù)的值.
(2)此題的關(guān)鍵是求出點(diǎn)D的坐標(biāo)(由此得到BD的距離)以及⊙D的半徑,首先由拋物線的解析式求出點(diǎn)D的坐標(biāo),再連接圓心D與切點(diǎn),通過構(gòu)建的相似三角形來解.然后通過比較兩圓的半徑以及BD的長來得到兩圓的位置關(guān)系.
(3)由于∠ABC是直角,過點(diǎn)C作x軸的垂線,通過構(gòu)建的相似三角形可以求出點(diǎn)C的坐標(biāo)表達(dá)式,再代入拋物線的解析式中可確定點(diǎn)C的坐標(biāo),然后通過圖形間的面積和差關(guān)系求出△ADC的面積;若△APDC的面積最大,那么△APD的面積最大(因?yàn)椤鰽DC的面積是定值),可先求出直線AD的解析式,然后過點(diǎn)D作y軸的平行線,交直線AD于Q,在表達(dá)出點(diǎn)P、Q的坐標(biāo)后,可得到線段PQ的表達(dá)式,以PQ為底,點(diǎn)A、D橫坐標(biāo)的差的絕對(duì)值為高,可求出△APD的面積,由此可得四邊形APDC的面積與點(diǎn)P的橫坐標(biāo)函數(shù)關(guān)系式,根據(jù)函數(shù)的性質(zhì)可求出四邊形APDC的最大面積以及此時(shí)點(diǎn)P的坐標(biāo).
解答:解:(1)∵拋物線y=x2-2x+k經(jīng)過點(diǎn)B(2,0),
×4-2×2+k=0,k=3;
故拋物線的解析式:y=x2-2x+3.

(2)由(1)的拋物線解析式知:A(0,3)、D(6,0);
設(shè)⊙D與直線BC的切點(diǎn)為E,連接DE,則 DE⊥BE;
∵∠ABC=90°,
∴∠ABO=∠BDE=90°-∠DBE,又∠AOB=∠BED=90°,
∴△AOB∽△BED,有:=,即 =,r=≈2.2;
∴2.2-2<BD<2.2+2,即rD-rB<BD<rD+rB
∴⊙B與⊙D的位置關(guān)系為相交.

(3)過點(diǎn)C作CF⊥x軸于點(diǎn)F,設(shè)點(diǎn)C(x,x2-2x+3),則 CF=x2-2x+3,BF=x-2;
同(2)可證得:Rt△AOB∽R(shí)t△BFC,有:
=,即 =
解得:x1=2(舍)、x2=
則C(,),CF=,DF=OF-OD=-6=;
故S△ADC=S梯形AOFC-S△AOD-S△CDF
=×(3+)×-×3×6-××
=;
由A(0,3)、D(6,0)得,直線AD:y=-x+3;
過點(diǎn)P作PQ∥y軸,交直線AD于點(diǎn)Q;設(shè)點(diǎn)P(x,x2-2x+3),則Q(x,-x+3),PQ=(-x+3)-(x2-2x+3)=-x2+x;
則S△APD=×PQ×OD=×(-x2+x)×6=-x2+x;
則S四邊形APDC=S△ADC+S△APD=-x2+x+=-(x-3)2+;
綜上,當(dāng)x=3,即 P(3,-)時(shí),四邊形APDC的面積最大,且最大值為
點(diǎn)評(píng):此題主要考查了函數(shù)解析式的確定、相似三角形的應(yīng)用、圓與圓的位置關(guān)系、圖形面積的解法以及二次函數(shù)的應(yīng)用等重點(diǎn)知識(shí);在解題過程中要注意數(shù)形結(jié)合思想的合理應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直角三角形ABC中∠ACB=90°,CD是高,∠A=30°,AB=4.則BD=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直角三角形ABC的直角邊AB=6,以AB為直徑畫半圓,若陰影部分的面積S1-S2=
π
2
,則BC=(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖在直角三角形ABC的斜邊AB上另作直角三角形ABD,并以AB為斜邊,若BC=1,AC=m,AD=2,則BD等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直角三角形ACB中,CD是斜邊AB上的中線,若AC=8cm,BC=6cm,那么△ACD與△BCD的周長差為
2
2
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直角三角形ABC中,∠C=90°,P,E分別是邊AB,BC上的點(diǎn),D為△ABC外一點(diǎn),DE⊥BC,DE=EC,BE=2EC,∠BDE=∠PEC,AD∥PE,AC=4,則線段BC的長為
12
12

查看答案和解析>>

同步練習(xí)冊答案