【題目】在數(shù)列{an}中,a2= .
(1)若數(shù)列{an}滿足2an﹣an+1=0,求an;
(2)若a4= ,且數(shù)列{(2n﹣1)an+1}是等差數(shù)列,求數(shù)列{ }的前n項和Tn .
【答案】
(1)解:∵數(shù)列{an}滿足2an﹣an﹣1=0,a2= .
∴an≠0, =2,∴a1= .
∴數(shù)列{an}是等比數(shù)列,公比為2,首項為 .
∴an= .
(2)解:數(shù)列{(2n﹣1)an+1}是等差數(shù)列,設(shè)公差為d,∵a4= ,a2= .
∴ +1= +1+2d,解得d=1.
∴(2n﹣1)an+1=3× +1+(n﹣2)×1,解得an= .
∴ =2n﹣1.
∴數(shù)列{ }的前n項和Tn=1+3+…+(2n﹣1)
= =n2.
【解析】(1)數(shù)列{an}滿足2an﹣an﹣1=0,a2= .可得an≠0, =2,利用等比數(shù)列的通項公式即可得出an . (2)數(shù)列{(2n﹣1)an+1}是等差數(shù)列,設(shè)公差為d,由a4= ,a2= .利用等差數(shù)列的通項公式可得d.進(jìn)而可得an . 再利用等差數(shù)列的求和公式即可得出.
【考點精析】本題主要考查了數(shù)列的前n項和和數(shù)列的通項公式的相關(guān)知識點,需要掌握數(shù)列{an}的前n項和sn與通項an的關(guān)系;如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,點P(3a,a)是反比例函數(shù)y=(k>0)與⊙O的一個交點,圖中陰影部分的面積為10π,則反比例函數(shù)的解析式為( 。
A.y=
B.y=
C.y=
D.y=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點O為坐標(biāo)原點,點B的坐標(biāo)為(4,3),點A、C在坐標(biāo)軸上,點P在BC邊上,直線l1:y=2x+3,直線l2:y=2x﹣3.
(1)分別求直線l1與x軸,直線l2與AB的交點坐標(biāo);
(2)已知點M在第一象限,且是直線l2上的點,若△APM是等腰直角三角形,求點M的坐標(biāo);
(3)我們把直線l1和直線l2上的點所組成的圖形為圖形F.已知矩形ANPQ的頂點N在圖形F上,Q是坐標(biāo)平面內(nèi)的點,且N點的橫坐標(biāo)為x,請直接寫出x的取值范圍(不用說明理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個命題: ①回歸直線 恒過樣本中心點 ;
②“x=6”是“x2﹣5x﹣6=0”的必要不充分條件;
③“x0∈R,使得x02+2x0+3<0”的否定是“對x∈R,均有x2+2x+3>0”;
④“命題p∨q”為真命題,則“命題p∧q”也是真命題.
其中真命題的個數(shù)是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= x3﹣ x2+logax,(a>0且a≠1)為定義域上的增函數(shù),f'(x)是函數(shù)f(x)的導(dǎo)數(shù),且f'(x)的最小值小于等于0. (Ⅰ)求a的值;
(Ⅱ)設(shè)函數(shù) ,且g(x1)+g(x2)=0,求證: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 ,以原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,圓C 的極坐標(biāo)方程為 .
(1)寫出直線l的普通方程及圓C 的直角坐標(biāo)方程;
(2)點P是直線l上的,求點P 的坐標(biāo),使P 到圓心C 的距離最小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等邊三角形,BD=2AD=8,AB=4 .
(Ⅰ)證明:平面PBD⊥平面PAD;
(Ⅱ)求二面角B﹣PA﹣D的余弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B,C,D為平面四邊形ABCD的四個內(nèi)角,若A+C=180°,AB=6,BC=4,CD=5,AD=5,則四邊形ABCD面積是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com