如圖,已知等邊△ABC的周長為6,BD是AC邊的中線,E為BC延長線上一點,CD=CE,那么△BDE的周長是( 。
A.B.C.D.
C

試題分析:根據(jù)等腰三角形的三線合一的性質(zhì)結(jié)合等邊三角形的性質(zhì)和勾股定理可得BD的長,再證得△BDE為等腰三角形,即可得到結(jié)果.
∵等邊△ABC的周長為6,BD是AC邊的中線,
∴CD=CE=1,BC=2,∠DBC=∠ABC=30°,BD⊥AC,
,
∵等邊△ABC,
∴∠ACB=60°,
∵CD=CE,
∴∠DEC=∠CDE=∠ACB=30°,
∴∠DBC=∠DEC,
,
∴△BDE的周長是,
故選C.
點評:解答本題的關(guān)鍵是熟練掌握等腰三角形的三線合一的性質(zhì):等腰三角形的頂角平分線,底邊上的中線,底邊上的高互相重合.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分線, DEAB于點E

                                       
(1)如圖1,連接EC,求證:△EBC是等邊三角形;
(2)點M是線段CD上的一點(不與點C,D重合),以BM為一邊,在BM的下方作∠BMG=60°,MGDE延長線于點G.請你在圖2中畫出完整圖形,并直接寫出MDDGAD之間的數(shù)量關(guān)系;
(3)如圖3,點N是線段AD上的一點,以BN為一邊,在BN的下方作∠BNG=60°,NGDE延長線于點G,且MB=MG.試探究NDDGAD數(shù)量之間的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

以線段、b、c 的長為邊長能構(gòu)成直角三角形的是
A.=3,b=4,c="6" B.=1,b=,c=
C.=5,b=6,c=8D.=,b=2,c=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

滿足下列哪種條件時,能判定△與△全等的是 ( 。
A.,
B.,,
C.,
D.,,△的周長= △的周長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知一個邊長分別為6、8、10的直角三角形,請設(shè)計出一個有一條邊長為8的直角三角形,使這兩個直角三角形能夠拼成一個等腰三角形.畫出4種不同拼法(周長不等)的等腰三角形;請在四個備用圖中分別畫出,并在圖中標(biāo)明拼接的直角三角形的三邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

從n邊形的一個頂點出發(fā),分別連接這個點與其余各個頂點,得到分割成的五個三角形,那么,這個多邊形為___________邊形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列各組數(shù)能構(gòu)成直角三角形的是(   )
A.1,2,3B.4,5,6C.6,8,10D.7,9,11

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6㎝,則△DEB的周長是(     )
A.6㎝B.4㎝C.10㎝D.以上都不對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,點D為BC邊上的點,BE平分∠ABC交AD于點E.若∠ABE=15°,∠BAD=40°,求∠ADC的度數(shù)。

查看答案和解析>>

同步練習(xí)冊答案