精英家教網 > 初中數學 > 題目詳情
已知:如圖,正比例函數y=ax的圖象與反比例函數y=
kx
的圖象交于點A(3,2)
(1)試確定上述正比例函數和反比例函數的表達式;
(2)根據圖象回答,在第一象限內,當x取何值時,反比例函數的值大于正比例函數的值?
(3)點M(m,n)是反比例函數圖象上的一動點,其中0<m<3,過點M作直線MB∥x軸,交y軸于點B;過點A作直線AC∥y軸交x軸于點C,交直線MB于點D.當四邊形OADM的面積為6時,請判斷線段BM與DM的大小關系,并說明理由.
分析:(1)將A坐標分別代入正比例與反比例解析式中求出a與k的值,即可確定出兩函數解析式;
(2)在圖象上找出反比例在正比例上方時x的范圍即可;
(3)BM=DM,理由為:由反比例函數k的幾何意義得到三角形OBM與三角形OAC面積為k的絕對值的一半,求出面積,矩形OBDC的面積=三角形OBM面積+四邊形OADM面積+三角形OAC面積,求出矩形OBDC的面積,即為OB與OC的積,由OC的長求出OB的長,即為n的值,將n的值代入反比例解析式中求出m的值,即為BM的長,由BD-BM求出MD的長,即可作出判斷.
解答:解:(1)將A(3,2)分別代入y=
k
x
,y=ax得:k=6,a=
2
3
,
則反比例解析式為y=
6
x
,正比例解析式為y=
2
3
x;
(2)由圖象得:在第一象限內,當0<x<3時,反比例函數的值大于一次函數的值;
(3)BM=DM,理由為:
∵S△OMB=S△OAC=
1
2
×|k|=3,
∴S矩形OBDC=S四邊形OADM+S△OMB+S△OAC=3+3+6=12,即OC•OB=12,
∵OC=3,∴OB=4,即n=4,
∴m=
6
n
=
3
2

∴MB=
3
2
,MD=3-
3
2
=
3
2
,
則MB=MD.
點評:此題考查了一次函數與反比例函數的交點問題,涉及的知識有:待定系數法求函數解析式,坐標與圖形性質,一次函數與坐標軸的交點,利用了數形結合的思想,熟練掌握待定系數法是解本題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,已知正比例函數y=x與反比例函數y=
1x
的圖象交于A、B兩點.
(1)求出A、B兩點的坐標;
(2)根據圖象求使正比例函數值大于反比例函數值的x的范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知正比例函數y1=x,反比例函數y2=
1
x
,由y1,y2構造一個新函數y=x+
1
x
其圖象如圖所示.(因其圖精英家教網象似雙鉤,我們稱之為“雙鉤函數”).給出下列幾個命題:
①該函數的圖象是中心對稱圖形;
②當x<0時,該函數在x=-1時取得最大值-2;
③y的值不可能為1;
④在每個象限內,函數值y隨自變量x的增大而增大.
其中正確的命題是
 
.(請寫出所有正確的命題的序號)

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,已知正比例函數y=ax(a≠0)的圖象與反比例函致y=
kx
(k≠0)的圖象的一個交點為A(-1,2-k2),另一個交點為B,且A、B關于原點O對稱,D為OB的中點,過點D的線段OB的垂直平分線與x軸、y軸分別交于C、E.
(1)寫出反比例函數和正比例函數的解析式;
(2)試計算△COE的面積是△ODE面積的多少倍?

查看答案和解析>>

科目:初中數學 來源: 題型:

已知正比例函數y1=x,反比例函數y2=
1
x
,由y1,y2構造一個新函數y=x+
1
x
,其圖象如圖所示.(因其圖象似雙鉤,我們稱之為“雙鉤函數”).給出下列幾個命題:
①該函數的圖象是中心對稱圖形;
②當x<0時,該函數在x=-1時取得最大值-2;
③y的值不可能為1;
④在每個象限內,函數值y隨自變量x的增大而增大.
其中正確的命題是(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知二次函數y=ax2+bx+c的圖象經過三點A(-1,0),B(3,0),C(0,3),它的頂點為M,又正比例函數y=kx的圖象與二次函數相交于兩點D、E,且P是線段DE的中點.
(1)求該二次函數的解析式,并求函數頂點M的坐標;
(2)已知點E(2,3),且二次函數的函數值大于正比例函數值時,試根據函數圖象求出符合條件的自變量x的取值范圍;
(3)當k為何值時且0<k<2,求四邊形PCMB的面積為
93
16

(參考公式:已知兩點D(x1,y1),E(x2,y2),則線段DE的中點坐標為(
x1+x2
2
,
y1+y2
2
)

查看答案和解析>>

同步練習冊答案