不透明的口袋中共有5個紅球,3個黃球,2個白球,不做實(shí)驗(yàn),你能說出下列事件出現(xiàn)的機(jī)會嗎?

(1)一次摸出9個球,必定三種顏色的球都有了;

(2)一次摸出3個球,有3個白球.

答案:
解析:

(1)100%;(2)0


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在一個不透明的口袋中裝有若干個只有顏色不同的球,如果口袋中裝有4個紅球,且摸出紅球的概率為
1
3
,那么袋中共有球的個數(shù)為( 。
A、12個B、9個C、7個D、6個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

17、實(shí)際問題:某學(xué)校共有18個教學(xué)班,每班的學(xué)生數(shù)都是40人.為了解學(xué)生課余時間上網(wǎng)情況,學(xué)校打算做一次抽樣調(diào)查,如果要確保全校抽取出來的學(xué)生中至少有10人在同一班級,那么全校最少需抽取多少名學(xué)生?
建立模型:為解決上面的“實(shí)際問題”,我們先建立并研究下面從口袋中摸球的數(shù)學(xué)模型:
在不透明的口袋中裝有紅,黃,白三種顏色的小球各20個(除顏色外完全相同),現(xiàn)要確保從口袋中隨機(jī)摸出的小球至少有10個是同色的,則最少需摸出多少個小球?
為了找到解決問題的辦法,我們可把上述問題簡單化:
(1)我們首先考慮最簡單的情況:即要確保從口袋中摸出的小球至少有2個是同色的,則最少需摸出多少個小球?
假若從袋中隨機(jī)摸出3個小球,它們的顏色可能會出現(xiàn)多種情況,其中最不利的情況就是它們的顏色各不相同,那么只需再從袋中摸出1個小球就可確保至少有2個小球同色,即最少需摸出小球的個數(shù)是:1+3=4(如圖①);
(2)若要確保從口袋中摸出的小球至少有3個是同色的呢?
我們只需在(1)的基礎(chǔ)上,再從袋中摸出3個小球,就可確保至少有3個小球同色,即最少需摸出小球的個數(shù)是:1+3×2=7(如圖②)
(3)若要確保從口袋中摸出的小球至少有4個是同色的呢?
我們只需在(2)的基礎(chǔ)上,再從袋中摸出3個小球,就可確保至少有4個小球同色,即最少需摸出小球的個數(shù)是:1+3×3=10(如圖③):…
(10)若要確保從口袋中摸出的小球至少有10個是同色的呢?
我們只需在(9)的基礎(chǔ)上,再從袋中摸出3個小球,就可確保至少有10個小球同色,即最少需摸出小球的個數(shù)是:1+3×(10-1)=28(如圖⑩)

模型拓展一:在不透明的口袋中裝有紅,黃,白,藍(lán),綠五種顏色的小球各20個(除顏色外完全相同),現(xiàn)從袋中隨機(jī)摸球:
(1)若要確保摸出的小球至少有2個同色,則最少需摸出小球的個數(shù)是
6
;
(2)若要確保摸出的小球至少有10個同色,則最少需摸出小球的個數(shù)是
46
;
(3)若要確保摸出的小球至少有n個同色(n<20),則最少需摸出小球的個數(shù)是
1+5(n-1)

模型拓展二:在不透明口袋中裝有m種顏色的小球各20個(除顏色外完全相同),現(xiàn)從袋中隨機(jī)摸球:
(1)若要確保摸出的小球至少有2個同色,則最少需摸出小球的個數(shù)是
1+m

(2)若要確保摸出的小球至少有n個同色(n<20),則最少需摸出小球的個數(shù)是
1+m(n-1)

問題解決:(1)請把本題中的“實(shí)際問題”轉(zhuǎn)化為一個從口袋中摸球的數(shù)學(xué)模型;
(2)根據(jù)(1)中建立的數(shù)學(xué)模型,求出全校最少需抽取多少名學(xué)生?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在一個不透明的口袋中裝有若干個只有顏色不同的球,如果已知袋中只有3個紅球,且一次摸出一個球是紅球的概率為
13
,那么袋中的球共有
 
個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:新課標(biāo)讀想練八年級數(shù)學(xué)(上) 題型:044

不透明的口袋中共有5個紅球,3個黃球,2個白球,不做實(shí)驗(yàn),你能說出下列事件出現(xiàn)的機(jī)會嗎?

(1)一次摸出3個紅球,1個黃球;

(2)一次摸出9個球,必定3種顏色的球都有了;

(3)一次摸出2個黃球,3個白球.

查看答案和解析>>

同步練習(xí)冊答案