已知AB為⊙O的直徑,PA、PC是⊙O的切線,A、C為切點,∠BAC=30°.
小題1:求∠P的度數(shù);
小題2:若AB=2,求PA的長.

小題1:∠P=60°;(
小題2:PA=

(Ⅰ)根據(jù)切線的性質(zhì)及切線長定理可證明△PAC為等邊三角形,則∠P的大小可求;
(Ⅱ)由(Ⅰ)知PA=PC,在Rt△ACB中,利用30°的特殊角度可求得AC的長.
解:(Ⅰ)∵PA是⊙O的切線,AB為⊙O的直徑,
∴PA⊥AB,
∴∠BAP=90°;
∵∠BAC=30°,
∴∠CAP=90°-∠BAC=60°.
又∵PA、PC切⊙O于點A、C,
∴PA=PC,
∴△PAC為等邊三角形,
∴∠P=60°.
(Ⅱ)如圖,連接BC,則∠ACB=90°.
在Rt△ACB中,AB=2,∠BAC=30°,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知⊙O與⊙O外切,⊙O的半徑R="5cm," ⊙O的半徑r =1cm,則⊙O與⊙O的圓心距是
A.1cmB.4cmC.5cmD.6cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

若兩圓的圓心距為5,兩圓的半徑分別是方程x2-4x+3=0的兩個根,則兩圓的位置關(guān)系是
A.相交B.外離C.內(nèi)含D.外切

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(8分)如圖,A、B、C、D是⊙O上的四點,AB=DC.

小題1:(1)找出圖中相等的圓周角;
小題2:(2)說明△ABC與△DCB全等的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖10,四邊形ABCD內(nèi)接于⊙O,并且AD是⊙O的直徑,C是弧BD的中點,AB和DC的延長線交⊙O外一點E.求證:BC=EC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知正方形紙片ABCD的邊長為8,⊙0的半徑為2,圓心在正方形的中心上,將紙片按圖示方式折疊,使EA恰好與⊙O相切于點A ′(△EFA′與⊙O除切點外無重疊部分),延長FA′交CD邊于點G,則A′G的長是         

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

⊙O的半徑為1,AB是⊙O 的一條弦,且AB=,則弦AB所對的弧長為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

.(8分)如圖1,已知直線y=2x(即直線l1)和直線y=—x+4(即直線l2),l2與x軸相交于點A.點P從原點O出發(fā),向x軸的正方向作勻速運動,速度為每秒1個單位,同時點Q從A點出發(fā),向x軸的負方向作勻速運動,速度為每秒2個單位.設(shè)運動了t秒.

小題1:(1)求這時點P、Q的坐標(biāo)(用t表示).
小題2:(2)過點P、Q分別作x軸的垂線,與l1、l2分別相交于點O1、O2(如圖1).
以O(shè)1為圓心、O1P為半徑的圓與以O(shè)2為圓心、O2Q為半徑的圓能否相切若能,求出t值;若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,四邊形ABCD內(nèi)接于⊙O,則下列結(jié)論錯誤的是                ( )
A.∠1=∠AB.∠B=∠DC.∠A+∠2=180°D.∠A+∠2=∠B+∠D

查看答案和解析>>

同步練習(xí)冊答案