某鄉(xiāng)鎮(zhèn)中學(xué)教師宿舍樓頂有一蓄水池.將滿(mǎn)池水排空所需時(shí)間t(h)與每小時(shí)的排水量Q(m3)之間的函數(shù)關(guān)系如圖所示.

(1)蓄水池的容積是多少?

(2)求出t與Q之間的函數(shù)關(guān)系式;

(3)如果準(zhǔn)備在3h內(nèi)將滿(mǎn)池水排空,那么每小時(shí)的排水量至少為多少?

答案:
解析:

  (1)由圖像知(3,5)在圖像上,

  ∴VQ·t3×515(m3)

  (2)t

  (3)當(dāng)t3時(shí),Q5(h)


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某鄉(xiāng)鎮(zhèn)中學(xué)數(shù)學(xué)活動(dòng)小組,為測(cè)量數(shù)學(xué)樓后面的山高AB,用了如下方法.如圖所示,在教學(xué)樓底C處測(cè)得山頂A的仰角為60°,在教學(xué)樓頂D處,測(cè)得山頂A的俯角為45°.已知教學(xué)樓高CD=12米,求山高AB.(參考數(shù)據(jù)
3
=1.73
2
=1.41,精英家教網(wǎng)精確到0.1米,化簡(jiǎn)后再代入?yún)?shù)數(shù)據(jù)運(yùn)算)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)某鄉(xiāng)鎮(zhèn)中學(xué)教學(xué)樓對(duì)面是一座小山,去年“聯(lián)通”公司在山頂上建了座通訊鐵塔.甲、乙兩位同學(xué)想測(cè)出鐵塔的高度,他們用測(cè)角器作了如下操作:甲在教學(xué)樓頂A處測(cè)得塔尖M的仰角為α,塔座N的仰角為β;乙在一樓B處只能望到塔尖M,測(cè)得仰角為θ(望不到底座),他們知道樓高AB=20m,通過(guò)查表得:tanα=0.5723,tanβ=0.2191,tanθ=0.7489;請(qǐng)你根據(jù)這幾個(gè)數(shù)據(jù),結(jié)合圖形推算出鐵塔高度MN的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿(mǎn)分8分)
某鄉(xiāng)鎮(zhèn)中學(xué)數(shù)學(xué)活動(dòng)小組,為測(cè)量數(shù)學(xué)樓后面的山高AB,用了如下的方法.如圖所示,在教學(xué)樓底C處測(cè)得山頂A的仰角為60°,在教學(xué)樓頂D處,測(cè)得山頂A的仰角為45°.已知教學(xué)樓高CD=12米,求山高AB.(參考數(shù)據(jù)=1.73,=1.41,精確到0.1米,化簡(jiǎn)后再代入?yún)⒖紨?shù)據(jù)運(yùn)算)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第1章《解直角三角形》中考題集(33):1.5 解直角三角形的應(yīng)用(解析版) 題型:解答題

某鄉(xiāng)鎮(zhèn)中學(xué)教學(xué)樓對(duì)面是一座小山,去年“聯(lián)通”公司在山頂上建了座通訊鐵塔.甲、乙兩位同學(xué)想測(cè)出鐵塔的高度,他們用測(cè)角器作了如下操作:甲在教學(xué)樓頂A處測(cè)得塔尖M的仰角為α,塔座N的仰角為β;乙在一樓B處只能望到塔尖M,測(cè)得仰角為θ(望不到底座),他們知道樓高AB=20m,通過(guò)查表得:tanα=0.5723,tanβ=0.2191,tanθ=0.7489;請(qǐng)你根據(jù)這幾個(gè)數(shù)據(jù),結(jié)合圖形推算出鐵塔高度MN的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案