【題目】如圖,點A在函數(shù)y=(x0)的圖象上,過點Ax軸、y軸的垂線分別交函數(shù)y=(x0,k2)的圖象于點B、C,過點Cx軸的垂線交y=(x0)的圖象于點D,連結BC、OC、OD.若點A、C的橫坐標分別為12,則△ABC與△OCD的面積之和為(  )

A.2B.3C.4D.6

【答案】A

【解析】

依據(jù)反比例函數(shù)圖象上點的坐標特征,即可得到點AB,CD的坐標,再根據(jù)三角形面積計算公式,即可得到△ABC與△OCD的面積之和.

解:∵點A在函數(shù)y=x0)的圖象上,點A的橫坐標為1,

∴點A的坐標為(1,2),

又∵ACy軸,點C的橫坐標為2,

∴點C的坐標為(22),即k=4

又∵CDx軸,點D在函數(shù)y=的圖象上,

D2,1).

ABx軸,

B1,4),

∴△ABC與△OCD的面積之和為×(42)×(21+×(21)×2=2

故選:A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校組織了一次七年級科技小制作比賽,有A、B、C、D四個班共提供了100件參賽作品,C班提供的參賽作品的獲獎率為50%,其他幾個班的參賽作品情況及獲獎情況繪制在下列圖①和圖②兩幅尚不完整的統(tǒng)計圖中.

(1)B班參賽作品有多少件?

(2)請你將圖②的統(tǒng)計圖補充完整;

(3)通過計算說明,哪個班的獲獎率高?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,A(﹣40).正方形OBCD的頂點Bx軸的負半軸上,點C在第二象限.現(xiàn)將正方形OBCD繞點O順時針旋轉角α得到正方形OEFG

1)如圖2,若α60°,OEOA,求直線EF的函數(shù)表達式.

2)若α為銳角,tanα,當AE取得最小值時,求正方形OEFG的面積.

3)當正方形OEFG的頂點F落在y軸上時,直線AE與直線FG相交于點P,△OEP的其中兩邊之比能否為1?若能,求點P的坐標;若不能,試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線與軸交于點且過點

求拋物線的解析式;

拋物線的頂點坐標;

取什么值時,的增大而增大;取什么值時,增大而減。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年,我國海關總署嚴厲打擊“洋垃圾”違法行動,堅決把“洋垃圾”拒于國門之外如圖,某天我國一艘海監(jiān)船巡航到港口正西方的處時,發(fā)現(xiàn)在的北偏東方向,相距海里處的點有一可疑船只正沿方向行駛,點在港口的北偏東方向上,海監(jiān)船向港口發(fā)出指令,執(zhí)法船立即從港口沿方向駛出,在處成功攔截可疑船只,此時點與點的距離為海里.

1)求的度數(shù)與點到直線的距離;

2)執(zhí)法船從航行了多少海里?(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=45°,它的外接圓的圓心O在其內部,連結OC,過點AADOC,交BC的延長線于點D

1)求證:ADO的切線;

2)若∠BAD=105°,O的半徑為2,求劣弧AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, 已知∠ABC=90°,點P為射線BC上任意一點(點P與點B不重合),分別以AB、AP為邊在∠ABC的內部作等邊△ABE和△APQ,連接QE并延長交BP于點F. 試說明:(1)△ABP≌△AEQ;(2)EFBF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料,然后解答問題.

經(jīng)過正四邊形(即正方形)各頂點的圓叫做這個正四邊形的外接圓,圓心是正四邊形的對稱中心,這個正四邊形叫做這個圓的內接正四邊形

如圖,正方形ABCD內接于⊙O,O的面積為S1,正方形ABCD的面積為S2.以圓心O為頂點作∠MON,使∠MON90°.將∠MON繞點O旋轉,OM、ON分別與⊙O交于點E、F,分別與正方形ABCD的邊交于點G、H.設由OE、OF、及正方形ABCD的邊圍成的圖形(陰影部分)的面積為S

1OM經(jīng)過點A(如圖①),則S、S1、S2之間的關系為: (用含S1、S2的代數(shù)式表示)

2OMABG(如圖②),則(1)中的結論仍然成立嗎?請說明理由;

3)當∠MON旋轉到任意位置時(如圖③),則(1)中的結論任然成立嗎:請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列圖形:它們是按一定規(guī)律排列的,依照此規(guī)律,第10個圖形中共有_____個點.

查看答案和解析>>

同步練習冊答案