【題目】如圖,在平面直角坐標系中,A(﹣1,4),B(﹣4,0),C(﹣1,0).
(1)△A1B1C1與△ABC關(guān)于原點O對稱,畫出△A1B1C1并寫出點A1的坐標;
(2)△A2B2C2是△ABC繞原點O順時針旋轉(zhuǎn)90°得到的,畫出△A2B2C2并寫出點A2的坐標;
(3)連接OA、OA2,在△ABC繞原點O順時針旋轉(zhuǎn)90°得到的△A2B2C2的過程中,計算線段OA變換到OA2過程中掃過區(qū)域的面積是多少?(直接寫出答案)
【答案】(1)圖形見解析,點A1的坐標為(1,﹣4);(2)圖形見解析,點A2的坐標為(4,1);(3)
【解析】
(1)把△ABC的各個頂點關(guān)于原點的對稱點畫出來,連接起來,即可得到答案;
(2)把△ABC的各個頂點繞原點O順時針旋轉(zhuǎn)90°的對應點畫出來,連接起來,即可得到答案;(3)根據(jù)扇形的面積公式,即可求解.
(1)如圖所示,△A1B1C1即為所求,點A1的坐標為(1,﹣4);
(2)如圖所示,△A2B2C2即為所求,點A2的坐標為(4,1);
(3)∵線段OA變換到OA2過程中掃過區(qū)域是扇形,OA=,
∴線段OA變換到OA2過程中掃過區(qū)域的面積=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A、B、C三點均在二次函數(shù)y=x2的圖象上,M為線段AC的中點,BM∥y軸,且MB=2.設(shè)A、C兩點的橫坐標分別為t1、t2(t2>t1),則t2﹣t1的值為( )
A.3B.2C.2D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知⊙O的半徑為4,四邊形ABCD為⊙O的內(nèi)接四邊形,且AB=4,AD=4,則∠BCD的度數(shù)為( 。
A.105°B.115°C.120°D.135°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】近期豬肉價格不斷走高,引起了民眾與政府的高度關(guān)注,當市場豬肉的平均價格每千克達到一定的單價時,政府將投入儲備豬肉以平抑豬肉價格.據(jù)統(tǒng)計:從今年年初至7月20日,豬肉價格不斷走高,7月20日比年初價格上漲了60%.某市民于某超市今年7月20日購買2.5千克豬肉花100元錢.
(1)問:那么今年年初豬肉的價格為每千克多少元?
(2)某超市將進貨價為每千克30元的豬肉,按7月20日價格出售,平均一天能銷售出100千克,經(jīng)調(diào)查表明:豬肉的售價每千克下降1元,其日銷售量就增加20千克,超市為了實現(xiàn)銷售豬肉每天有1120元的銷售利潤,為了盡可能讓顧客優(yōu)惠應該每千克定價為多少元?
(3)7月21日,某市決定投入儲備豬肉并規(guī)定其在原銷售價的基礎(chǔ)上下調(diào)a%出售,某超市按規(guī)定價出售一批儲備豬肉,該超市在非儲備豬肉的價格不變情況下,該天的兩種豬肉總銷量比7月20日增加了a%,且儲備豬肉的銷量占總銷量的,兩種豬肉銷售的總金額比7月20日提高了a%,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】實踐:如圖△ABC是直角三角形,∠ACB=90°,利用直尺和圓規(guī)按下列要求作圖,并在圖中標明相應的字母.(保留作圖痕跡,不寫作法)
(1)作∠BAC的平分線,交BC于點O.
(2)以O為圓心,OC為半徑作圓.
綜合運用:在你所作的圖中,
(1)AB與⊙O的位置關(guān)系是_____ .(直接寫出答案)
(2)若AC=5,BC=12,求⊙O 的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角三角形中,,點為上的一點,以點為圓心,為半徑的圓弧與相切于點,交于點,連接.
(1)求證:平分;
(2)若,求圓弧的半徑;
(3)在的情況下,若,求陰影部分的面積(結(jié)果保留和根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市某校為了讓學生的課余生活豐富多彩,開展了以下課外活動:
代號 | 活動類型 |
A | 經(jīng)典誦讀與寫作 |
B | 數(shù)學興趣與培優(yōu) |
C | 英語閱讀與寫作 |
D | 藝體類 |
E | 其他 |
為了解學生的選擇情況,現(xiàn)從該校隨機抽取了部分學生進行問卷調(diào)查(參與問卷調(diào)查的每名學生只能選擇其中一項),并根據(jù)調(diào)查得到的數(shù)據(jù)繪制了如圖所示的兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖提供的信息回答下列問題(要求寫出簡要的解答過程).
(1)此次共調(diào)查了 名學生.
(2)將條形統(tǒng)計圖補充完整.
(3)“數(shù)學興趣與培優(yōu)”所在扇形的圓心角的度數(shù)為 .
(4)若該校共有2000名學生,請估計該校喜歡A、B、C三類活動的學生共有多少人?
(5)學校將從喜歡“A”類活動的學生中選取4位同學(其中女生2名,男生2名)參加校園“金話筒”朗誦初賽,并最終確定兩名同學參加決賽,請用列表或畫樹狀圖的方法,求出剛好一男一女參加決賽的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,點P在AD上,AB=2,AP=1.直角尺的直角頂點放在點P處,直角尺的兩邊分別交AB、BC于點E、F,連接EF(如圖1).
(1)當點E與點B重合時,點F恰好與點C重合(如圖2).
①求證:△APB∽△DCP;
②求PC、BC的長.
(2)探究:將直角尺從圖2中的位置開始,繞點P順時針旋轉(zhuǎn),當點E和點A重合時停止.在這個過程中(圖1是該過程的某個時刻),觀察、猜想并解答:
① tan∠PEF的值是否發(fā)生變化?請說明理由.
② 設(shè)AE=x,當△PBF是等腰三角形時,請直接寫出x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,∠B=600,CD是⊙O的直徑,點P是CD延長線上的一點,且AP=AC.
(1)求證:PA是⊙O的切線;
(2)若PD=,求⊙O的直徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com