如圖(1),拋物線y=x2-2x+k與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C(0,-3).[圖(2)、圖(3)為解答備用圖]

(1)k=______,點(diǎn)A的坐標(biāo)為______,點(diǎn)B的坐標(biāo)為______;
(2)設(shè)拋物線y=x2-2x+k的頂點(diǎn)為M,求四邊形ABMC的面積;
(3)在x軸下方的拋物線上是否存在一點(diǎn)D,使四邊形ABDC的面積最大?若存在,請(qǐng)求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】分析:(1)將C點(diǎn)坐標(biāo)代入拋物線的解析式中,即可求出k的值;令拋物線的解析式中y=0,即可求出A、B的坐標(biāo);
(2)將拋物線的解析式化為頂點(diǎn)式,即可求出M點(diǎn)的坐標(biāo);由于四邊形ACMB不規(guī)則,可連接OM,將四邊形ACMB的面積轉(zhuǎn)化為△ACO、△MOC以及△MOB的面積和;
(3)當(dāng)D點(diǎn)位于第三象限時(shí)四邊形ABCD的最大面積顯然要小于當(dāng)D位于第四象限時(shí)四邊形ABDC的最大面積,因此本題直接考慮點(diǎn)D為與第四象限時(shí)的情況即可;設(shè)出點(diǎn)D的橫坐標(biāo),根據(jù)拋物線的解析式即可得到其縱坐標(biāo);可參照(2)題的方法求解,連接OD,分別表示出△ACO、△DOC以及△DOB的面積,它們的面積和即為四邊形ABDC的面積,由此可得到關(guān)于四邊形ABDC的面積與D點(diǎn)橫坐標(biāo)的函數(shù)關(guān)系式,根據(jù)函數(shù)的性質(zhì)即可求出四邊形ABDC的最大面積及對(duì)應(yīng)的D點(diǎn)坐標(biāo).
解答:解:(1)由于點(diǎn)C在拋物線的圖象上,則有:k=-3;
∴y=x2-2x-3;
令y=0,則x2-2x-3=0,
解得x=-1,x=3,
∴A(-1,0),B(3,0);
故填:k=-3,A(-1,0),B(3,0);

(2)拋物線的頂點(diǎn)為M(1,-4),連接OM;
則△AOC的面積=AO•OC=×1×3=,
△MOC的面積=OC•|xM|=×3×1=,
△MOB的面積=OB•|yM|=×3×4=6;
∴四邊形ABMC的面積=△AOC的面積+△MOC的面積+△MOB的面積=9;

(3)設(shè)D(m,m2-2m-3),連接OD;
則0<m<3,m2-2m-3<0;
且△AOC的面積=,△DOC的面積=m,△DOB的面積=-(m2-2m-3);
∴四邊形ABDC的面積=△AOC的面積+△DOC的面積+△DOB的面積
=-m2+m+6=-(m-2+
∴存在點(diǎn)D(,-),使四邊形ABDC的面積最大,且最大值為
點(diǎn)評(píng):此題主要考查了二次函數(shù)解析式的確定、函數(shù)圖象與坐標(biāo)軸交點(diǎn)坐標(biāo)的求法、圖形面積的求法、二次函數(shù)的應(yīng)用等重要知識(shí)點(diǎn),綜合性強(qiáng),能力要求較高.考查學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,拋物線y=x2的頂點(diǎn)為P,A、B是拋物線上兩點(diǎn),AB∥x軸,四邊形ABCD為矩形,CD邊經(jīng)過點(diǎn)P,AB=2AD.
(1)求矩形ABCD的面積;
(2)如圖2,若將拋物線“y=x2”,改為拋物線“y=x2+bx+c”,其他條件不變,請(qǐng)猜想矩形ABCD的面積;
(3)若將拋物線“y=x2+bx+c”改為拋物線“y=ax2+bx+c”,其他條件不變,請(qǐng)猜想矩形ABCD的面積.(用a、b、c表示,并直接寫出答案)
附加題:若將題中“y=x2”改為“y=ax2+bx+c”,“AB=2AD”條件不要,其他條件不變,探索矩形ABCD面精英家教網(wǎng)積為常數(shù)時(shí),矩形ABCD需要滿足什么條件并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知一拋物線過坐標(biāo)原點(diǎn)O和點(diǎn)A(1,h)、B(4,0),C為拋物線對(duì)稱軸上一點(diǎn)精英家教網(wǎng),且OA⊥AB,∠COB=45°.
(1)求h的值;
(2)求此拋物線的解析式;
(3)若P為線段OB上一個(gè)動(dòng)點(diǎn)(與端點(diǎn)不重合),過點(diǎn)P作PM⊥AB于M,PN⊥OC于N,試求
PM
OA
+
PN
BC
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、目前國內(nèi)最大跨徑的鋼管混凝土拱橋--永和大橋,是南寧市又一標(biāo)志性建筑,其拱形圖形為拋物線的一部分(如圖1),在正常情況下,位于水面上的橋拱跨度為350米,拱高為85米.
(1)在所給的直角坐標(biāo)系中(如圖2),假設(shè)拋物線的表達(dá)式為y=ax2+b,請(qǐng)你根據(jù)上述數(shù)據(jù)求出a,b的值,并寫出拋物線的表達(dá)式;(不要求寫自變量的取值范圍,a,b的值保留兩個(gè)有效數(shù)字)
(2)七月份汛期將要來臨,當(dāng)邕江水位上漲后,位于水面上的橋拱跨度將會(huì)減小,當(dāng)水位上漲4m時(shí),位于水面上的橋拱跨度有多大?(結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知拋物線的頂點(diǎn)為A(0,1),矩形CDEF的頂點(diǎn)C、F在拋物線上,點(diǎn)D、E在x軸上,CF交y軸于點(diǎn)B(0,2),且其面積為8:
(1)此拋物線的解析式;
(2)如圖2,若點(diǎn)P為所求拋物線上的一動(dòng)點(diǎn),試判斷以點(diǎn)P為圓心,PB為半徑的圓與x軸的位置關(guān)系,并說明理由.
(3)如圖2,設(shè)點(diǎn)P在拋物線上且與點(diǎn)A不重合,直線PB與拋物線的另一個(gè)交點(diǎn)為Q,過點(diǎn)P、Q分別作x軸的垂線,垂足分別為N、M,連接PO、QO.求證:△QMO∽△PNO.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知知拋物線y=x2+bx+c與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,-3).
(1)求拋物線的解析式;
(2)如圖(1),己知點(diǎn)H(0,-1).問在拋物線上是否存在點(diǎn)G (點(diǎn)G在y軸的左側(cè)),使得S△GHC=S△GHA?若存在,求出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)如圖(2),拋物線上點(diǎn)D在x軸上的正投影為點(diǎn)E(-2,0),F(xiàn)是OC的中點(diǎn),連接DF,P為線段BD上的一點(diǎn),若∠EPF=∠BDF,求線段PE的長.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案