【題目】某校八年級(jí)學(xué)生小麗、小強(qiáng)和小紅到某超市參加了社會(huì)實(shí)踐活動(dòng),在活動(dòng)中他們參與了某種水果的銷(xiāo)售工作,已知該水果的進(jìn)價(jià)為8元/千克,下面是他們?cè)诨顒?dòng)結(jié)束后的對(duì)話.
小麗:如果以10元/千克的價(jià)格銷(xiāo)售,那么每天可售出300千克.
小強(qiáng):如果以13元/千克的價(jià)格銷(xiāo)售,那么每天可售出240千克.
小紅:通過(guò)調(diào)查驗(yàn)證,我發(fā)現(xiàn)每天的銷(xiāo)售量y(千克)與銷(xiāo)售單價(jià)x(元)之間存在一次函數(shù)關(guān)系,每天銷(xiāo)售200千克以上.
(1)求每天的銷(xiāo)售量y(千克)與銷(xiāo)售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)該超市銷(xiāo)售這種水果每天獲取的利潤(rùn)達(dá)到1040元,那么銷(xiāo)售單價(jià)為多少元?
【答案】(1)y=﹣20x+500;(2)該超市銷(xiāo)售這種水果每天獲取的利潤(rùn)達(dá)到1040元,那么銷(xiāo)售單價(jià)為12元.
【解析】試題分析:(1)用待定系數(shù)法求得一次函數(shù)的解析式;(2)列出方程即可解決問(wèn)題.
試題解析:
(1)設(shè)y=kx+b,
∵x=10,y=300;x=13,y=240,
∴ ,
解得,
∴y=﹣20x+500;
(2)(x﹣8)(﹣20x+500)=1040,
整理,得x2﹣33x+252=0,
解得x1=12,x2=21.
當(dāng)x=12時(shí),銷(xiāo)售量為﹣20×12+500=260>200,符合題意;
當(dāng)x=21時(shí),銷(xiāo)售量為﹣20×21+500=80<200,不符合題意,舍去,
所以x=12.
即該超市銷(xiāo)售這種水果每天獲取的利潤(rùn)達(dá)到1040元,那么銷(xiāo)售單價(jià)為12元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,,分別在軸正半軸和軸負(fù)半軸上,在第二象限,滿足:,.已知.
(1)求,的坐標(biāo);
(2)求點(diǎn)的坐標(biāo)及的面積;
(3)已知是軸的正半軸上一點(diǎn),,在第一象限,,,連接交軸于點(diǎn).
①求證:.
②在點(diǎn)的移動(dòng)過(guò)程中,給出以下兩個(gè)結(jié)論:(i)的值不變;(ii)的值不變,其中有且只有一個(gè)是正確的,請(qǐng)你找出這個(gè)結(jié)論并求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A(n,-2),B(1,4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個(gè)交點(diǎn),直線AB與y軸交于點(diǎn)C.
(1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;
(2)求△AOC的面積;
(3)求不等式kx+b-<0的解集(直接寫(xiě)出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A(4,0)、B(-6,0),點(diǎn)C是y軸上的一個(gè)動(dòng)點(diǎn),當(dāng)∠BCA=45°時(shí),點(diǎn)C的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=CB,∠BAC=∠BCA,∠ABC=90°,F為AB延長(zhǎng)線上一點(diǎn),點(diǎn)E在BC上,且AE=CF.
(1)求證:Rt△ABE≌ Rt△CBF;
(2)求證:AE⊥CF;
(3)若∠CAE=30°,求∠ACF度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,∠C=60°,點(diǎn)D,E分別是邊AC,BC上的點(diǎn),點(diǎn)P是直線AB上一動(dòng)點(diǎn),連接PD,PE,設(shè)∠DPE=α.
(1)如圖①所示,如果點(diǎn)P在線段BA上,且α=30°,那么∠PEB+∠PDA=___;
(2)如圖②所示,如果點(diǎn)P在線段BA上運(yùn)動(dòng),
①依據(jù)題意補(bǔ)全圖形;
②寫(xiě)出∠PEB+∠PDA的大小(用含α的式子表示);并說(shuō)明理由。
(3)如果點(diǎn)P在線段BA的延長(zhǎng)線上運(yùn)動(dòng),直接寫(xiě)出∠PEB與∠PDA之間的數(shù)量關(guān)系(用含α的式子表示).那么∠PEB與∠PDA之間的數(shù)量關(guān)系是___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)在春節(jié)期間搞優(yōu)惠促銷(xiāo)活動(dòng),商場(chǎng)將29英寸和25英寸彩電共96臺(tái)分別以8折和7折出售,共得168400元。已知29英寸彩電原價(jià)為3000元/臺(tái),25英寸彩電原價(jià)為2000元/臺(tái),出售29英寸和25英寸彩電各多少臺(tái)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】Rt△ABC中,∠BAC=90°,AB=3,AC=4,P為邊BC上一動(dòng)點(diǎn),PE⊥AB于E,PF⊥AC于F,M為EF中點(diǎn),則AM的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD是∠BAC的平分線,AD的垂線平分線交AB于點(diǎn)F,交BC的延長(zhǎng)線于點(diǎn)E,連接AE,DF.
求證:(1)∠EAD=∠EDA;(2)DF//AC;(3)∠EAC=∠B.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com