【題目】如圖,直角三角形紙片ABC的∠C為90°,將三角形紙片沿著圖示的中位線DE剪開,然后把剪開的兩部分重新拼接成不重疊的圖形,下列選項(xiàng)中不能拼出的圖形是( )
A.平行四邊形
B.矩形
C.等腰梯形
D.直角梯形
【答案】D
【解析】解:將剪開的△ADE繞E點(diǎn)順時(shí)針旋轉(zhuǎn)180°,使EA與EB重合,得到矩形,也就是平行四邊形,故A、B正確; 將剪開的△ADE繞D點(diǎn)逆時(shí)針旋轉(zhuǎn)180°,使DA與DC重合,得到等腰梯形,故C正確;
∴不能得到直角梯形,故D錯(cuò)誤.
故選D.
將剪開的△ADE繞E點(diǎn)順時(shí)針旋轉(zhuǎn)180°,使EA與EB重合,得到矩形,也就是平行四邊形,將剪開的△ADE繞D點(diǎn)逆時(shí)針旋轉(zhuǎn)180°,使DA與DC重合,得到等腰梯形,故不能得到直角梯形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,A,B分別在射線OA,ON上,且∠MON為鈍角,現(xiàn)以線段OA,OB為斜邊向∠MON的外側(cè)作等腰直角三角形,分別是△OAP,△OBQ,點(diǎn)C,D,E分別是OA,OB,AB的中點(diǎn).
(1)求證:△PCE≌△EDQ;
(2)延長PC,QD交于點(diǎn)R.
①如圖1,若∠MON=150°,求證:△ABR為等邊三角形;
②如圖3,若△ARB∽△PEQ,求∠MON大小和 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的布袋中裝有相同的三個(gè)小球,其上面分別標(biāo)注數(shù)字1、2、3、,現(xiàn)從中任意摸出一個(gè)小球,將其上面的數(shù)字作為點(diǎn)M的橫坐標(biāo);將球放回袋中攪勻,再從中任意摸出一個(gè)小球,將其上面的數(shù)字作為點(diǎn)M的縱坐標(biāo).
(1)寫出點(diǎn)M坐標(biāo)的所有可能的結(jié)果;
(2)求點(diǎn)M在直線y=x上的概率;
(3)求點(diǎn)M的橫坐標(biāo)與縱坐標(biāo)之和是偶數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一架飛機(jī)由A向B沿水平直線方向飛行,在航線AB的正下方有兩個(gè)山頭C、D.飛機(jī)在A處時(shí),測得山頭C、D在飛機(jī)的前方,俯角分別為60°和30°.飛機(jī)飛行了6千米到B處時(shí),往后測得山頭C的俯角為30°,而山頭D恰好在飛機(jī)的正下方.求山頭C、D之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具商店共有單價(jià)分別為10元、15元和20元的3種文具盒出售,該商店統(tǒng)計(jì)了2011年3月份這3種文具盒的銷售情況,并繪制統(tǒng)計(jì)圖如下:
(1)請(qǐng)?jiān)趫D②中把條形統(tǒng)計(jì)圖補(bǔ)充完整.
(2)小亮認(rèn)為:該商店3月份這3種文具盒總的平均銷售價(jià)格為 (元),你認(rèn)為小亮的計(jì)算方法正確嗎?如不正確,請(qǐng)計(jì)算出總的平均銷售價(jià)格.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,邊長為a(a為大于0的常數(shù))的正方形ABCD的對(duì)角線AC、BD相交于點(diǎn)P,頂點(diǎn)A在x軸正半軸上運(yùn)動(dòng),頂點(diǎn)B在y軸正半軸上運(yùn)動(dòng)(x軸的正半軸、y軸的正半軸都不包含原點(diǎn)O),頂點(diǎn)C、D都在第一象限.
(1)當(dāng)∠BAO=45°時(shí),求點(diǎn)P的坐標(biāo);
(2)求證:無論點(diǎn)A在x軸正半軸上、點(diǎn)B在y軸正半軸上怎樣運(yùn)動(dòng),點(diǎn)P都在∠AOB的平分線上;
(3)設(shè)點(diǎn)P到x軸的距離為h,試確定h的取值范圍,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,O為正方形ABCD的中心,分別延長OA、OD到點(diǎn)F、E,使OF=2OA,OE=2OD,連接EF.將△EOF繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α角得到△E1OF1(如圖2).
(1)探究AE1與BF1的數(shù)量關(guān)系,并給予證明;
(2)當(dāng)α=30°時(shí),求證:△AOE1為直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,tanB= ,BC=6,過點(diǎn)A作BC邊上的高,垂足為點(diǎn)D,且滿足BD:CD=2:1,則△ABC面積的所有可能值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com