【題目】在平面直角坐標系內(nèi),雙曲線:y= (x>0)分別與直線OA:y=x和直線AB:y=﹣x+10,交于C,D兩點,并且OC=3BD.
(1)求出雙曲線的解析式;
(2)連結CD,求四邊形OCDB的面積.

【答案】
(1)解:過點A、C、D作x軸的垂線,垂足分別是M、E、F,

∴∠AMO=∠CEO=∠DFB=90°,

∵直線OA:y=x和直線AB:y=﹣x+10,

∴∠AOB=∠ABO=45°,

∴△CEO∽△DEB

= =3,

設D(10﹣m,m),其中m>0,

∴C(3m,3m),

∵點C、D在雙曲線上,

∴9m2=m(10﹣m),

解得:m=1或m=0(舍去)

∴C(3,3),

∴k=9,

∴雙曲線y= (x>0)


(2)解:由(1)可知D(9,1),C(3,3),B(10,0),

∴OE=3,EF=6,DF=1,BF=1,

∴S四邊形OCDB=SOCE+S梯形CDFE+SDFB

= ×3×3+ ×(1+3)×6+ ×1×1=17,

∴四邊形OCDB的面積是17


【解析】(1)過點A、C、D作x軸的垂線,垂足分別是M、E、F,由直線y=x和y=﹣x+10可知∠AOB=∠ABO=45°,證明△CEO∽△DEB,從而可知 = =3,然后設設D(10﹣m,m),其中m>0,從而可知C的坐標為(3m,3m),利用C、D在反比例函數(shù)圖象上列出方程即可求出m的值.(2)求分別求出△OCE、△DFB△、梯形CDFE的面積即可求出答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點P是等邊△ABC內(nèi)一點,PA=3,PB=4,PC=5,求∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一輛貨車和一輛小轎車同時從甲地出發(fā),貨車勻速行駛至乙地,小轎車中途停車休整2h后提速行駛至乙地.設行駛時間為x( h),貨車的路程為y1( km),小轎車的路程為y2( km ),圖中的線段OA與折線OBCD分別表示y1,y2x之間的函數(shù)關系.

(1)甲乙兩地相距_____km,m=_____;

(2)求線段CD所在直線的函數(shù)表達式;

(3)小轎車停車休整后還要提速行駛多少小時,與貨車之間相距20km?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線ABCD相交于點O,AOEDOF=90°,OP是∠BOC的平分線,AOD=40°.

(1)求∠EOP的度數(shù);

(2)寫出∠AOD的補角和余角.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

(1)(-15)÷(-3);

(2)(-12)÷(-);

(3)(-0.75)÷0.25;

(4)(-12)÷(-)÷(-100).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知線段ABCD的公共部分BD=AB= CD線段AB、CD的中點E,F之間距離是10cm,AB,CD的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點坐標為Q(2,﹣1),且與y軸交于點C(0,3),與x軸交于A,B兩點(點A在點B的右側(cè)),點P是該拋物線上的一動點,從點C沿拋物線向點A運動(點P與A不重合),過點P作PD∥y軸,交AC于點D.

(1)求該拋物線的函數(shù)關系式;
(2)當△ADP是直角三角形時,求點P的坐標;
(3)在題(2)的結論下,若點E在x軸上,點F在拋物線上,問是否存在以A、P、E、F為頂點的平行四邊形?若存在,求點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:線段AB=20cm.

(1)如圖1,點P沿線段ABA點向B點以2厘米/秒運動,點P出發(fā)2秒后,Q沿線段BAB點向A點以3厘米/秒運動,問再經(jīng)過幾秒后P、Q相距5cm?

(2)如圖2:AO=4厘米,PO=2厘米POB=60°,點P繞著點O60°/秒的速度時針旋轉(zhuǎn)一周停止,同時點Q沿直線BAB點向A點運動,假若點P、Q兩點能相遇,求點Q運動的速度

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB,CD相交于點O,OE平分∠AOC,∠AOD比∠AOE大75°,求∠AOD的度數(shù).

查看答案和解析>>

同步練習冊答案