如果一個(gè)等腰三角形的周長(zhǎng)為27,且兩邊的差為12,則這個(gè)等腰三角形的底邊的長(zhǎng)為__________.
1.
【考點(diǎn)】等腰三角形的性質(zhì);三角形三邊關(guān)系.
【分析】設(shè)等腰三角形的腰長(zhǎng)為x,則底邊長(zhǎng)為x﹣12或x+12,再根據(jù)三角形的周長(zhǎng)即可求得.
【解答】解:設(shè)等腰三角形的腰長(zhǎng)為x,則底邊長(zhǎng)為x﹣12或x+12,
當(dāng)?shù)走呴L(zhǎng)為x﹣12時(shí),根據(jù)題意,2x+x﹣12=27,
解得x=13,
∴底邊長(zhǎng)為1;
當(dāng)?shù)走呴L(zhǎng)為x+12時(shí),根據(jù)題意,2x+x+12=27,
解得x=5,
因?yàn)?+5<17,所以構(gòu)不成三角形,
故這個(gè)等腰三角形的底邊的長(zhǎng)為1,
故答案為1.
【點(diǎn)評(píng)】此題考查了等腰三角形的性質(zhì)與三角形的三邊關(guān)系.此題難度不大,注意分類討論思想的運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,線段AB=12cm,延長(zhǎng)AB到點(diǎn)C,使BC=AB,點(diǎn)D是BC中點(diǎn),點(diǎn)E是AD中點(diǎn).
(1)根據(jù)題意,補(bǔ)全圖形;
(2)求DE的長(zhǎng);
(3)若動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以1cm/s的速度向點(diǎn)C運(yùn)動(dòng),到達(dá)點(diǎn)C停止運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā),以2cm/s的速度向點(diǎn)A運(yùn)動(dòng),到達(dá)點(diǎn)A停止運(yùn)動(dòng),若運(yùn)動(dòng)時(shí)間為ts,當(dāng)t為何值時(shí),PQ=3cm?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在Rt△ABC中,∠ACB=90°,AB的垂直平分線DE交AC于E,交BC的延長(zhǎng)線于F,若∠F=30°,DE=1,則BE的長(zhǎng)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在△ABC中,AB=AC,∠A=30°,以B為圓心,BC的長(zhǎng)為半徑圓弧,交AC于點(diǎn)D,連接BD,則∠ABD=( )
A.30° B.45° C.60° D.90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知,Rt△ABC中,∠ACB=90°,∠BAC=30°,分別以AB,AC為邊在△ABC外側(cè)作等邊三角形ABE與等邊三角形ACD.
(1)如圖①,求∠BAD的大;
(2)如圖②,連接DE交AB于點(diǎn)F.求證:EF=DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
一個(gè)邊長(zhǎng)為4cm的等邊三角形ABC與⊙O等高,如圖放置,⊙O與BC相切于點(diǎn)C,⊙O與AC相交于點(diǎn)E,則CE的長(zhǎng)為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,平行四邊形ABCD的對(duì)角線交于點(diǎn)O,且AB=5,△OCD的周長(zhǎng)為23,則平行四邊形ABCD的兩條對(duì)角線的和是( )
A.18 B.28 C.36 D.46
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com