【題目】我們把長與寬之比為的矩形紙片稱為標準紙.不難發(fā)現(xiàn),將一張標準紙如圖一次又一次對開后,所得的矩形紙片都是標準紙.現(xiàn)有一張標準紙,,那么把它第次對開后所得標準紙的周長是________

【答案】

【解析】

首先根據(jù)題意求出則第n對開后的長為:(n-1,寬為:(n,則周長為:2[(n-1+(n]= ,然后代入求解即可求得答案.

解:∵AB=1,BC=

∴第一對開后的長為:1,寬為:,則周長為:2(1+)=2+

第二對開后的長為:,寬為:,則周長為:2(+)=+1,

第三對開后的長為:,寬為:,則周長為:2(+)=1+,

則第n對開后的長為:(n-1,寬為:(n,

則周長為:2[(n-1+(n]=

∴當n=2012時,所得標準紙的周長是:

故答案為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】1)感知:如圖1,AD平分∠BAC,∠B+C180°,∠B90°,易知DBDC數(shù)量關(guān)系為:   

2)探究:如圖2,AD平分∠BAC,∠ABD+ACD180°,∠ABD90°,(1)中的結(jié)論是否成立?請作出判斷并給予證明.

3)應(yīng)用:如圖3,在四邊形ABCD中,DBDC,∠ABD+ACD180°,∠ABD90°,DEAB于點E,試判斷AB,AC,BE的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,學校的實驗樓對面是一幢教學樓,小敏在實驗樓的窗口C測得教學樓頂部D的仰角為18°,教學樓底部B的俯角為20°,量得實驗樓與教學樓之間的距離AB=30m.

(1)求BCD的度數(shù).

(2)求教學樓的高BD.(結(jié)果精確到0.1m,參考數(shù)據(jù):tan20°0.36,tan18°0.32)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形中,對角線,相交于點,且,,動點,分別從點,同時出發(fā),運動速度均為,點沿運動,到點停止,點沿運動,到點停止后繼續(xù)運動,到點停止,連接,,.設(shè)的面積為(這里規(guī)定:線段是面積的幾何圖形),點的運動時間為

如圖,菱形中,對角線,相交于點,且,,動點,分別從點,同時出發(fā),運動速度均為,點沿運動,到點停止,點沿運動,到點停止后繼續(xù)運動,到點停止,連接,,.設(shè)的面積為(這里規(guī)定:線段是面積的幾何圖形),點的運動時間為

填空:________,之間的距離為________

時,求之間的函數(shù)解析式;

直接寫出在整個運動過程中,使與菱形一邊平行的所有的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖的正方形網(wǎng)格中,每一個小正方形的邊長為1.格點三角形ABC(頂點是網(wǎng)格線交點的三角形)的頂點A、C的坐標分別是(﹣4,6),(﹣14).

1)請在圖中的網(wǎng)格平面內(nèi)建立平面直角坐標系;

2)請畫出△ABC關(guān)于x軸對稱的△A1B1C1;

3)△ABC   直角三角形(填不是);

4)請在y軸上畫一點P,使△PB1C的周長最小,并寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一般來說,依據(jù)數(shù)學研究對象本質(zhì)屬性的相同點和差異點,將數(shù)學對象分為不同種類的數(shù)學思想叫做分類的思想;將事物進行分類,然后對劃分的每一類分別進行研究和求解的方法叫做分類討論的方法.請依據(jù)分類的思想和分類討論的方法解決下列問題:

如圖,在中,

是銳角,請?zhí)剿髟谥本上有多少個點,能保證(不包括全等)?

請對進行恰當?shù)姆诸,直接寫出每一類在直線上能保證(不包括全等)的點的個數(shù)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點D,過點DEFBCAB,AC于點E,F,若AB=10,AC=8,則△AEF的周長是_______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在直角坐標平面內(nèi),三個頂點的坐標分別為、(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).

向下平移個單位長度得到的,點的坐標是________;

以點為位似中心,在網(wǎng)格內(nèi)畫出,使位似,且位似比為,點的坐標是________;(畫出圖形)

的面積是________平方單位.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)y=與一次函數(shù)y=kx+b的圖象交于點A(﹣2,1),B(1,n),交y軸于點C.

(1)求反比例函數(shù)與一次函數(shù)的解析式;

(2)求△AOB的面積;

(3)若點Py軸上的點,請直接寫出能使△PAC為等腰三角形的點P的坐標.

查看答案和解析>>

同步練習冊答案