精英家教網 > 初中數學 > 題目詳情

【題目】已知:如圖,BDABC的角平分線,且BD=BCEBD延長線上的一點,BE=BA,過EEFAB,F為垂足.下列結論:①△ABDEBC;②∠BCE+BCD=180°;③AD=AE=EC;④BA+BC=2BF;其中正確的是(  。

A.①②③B.①③④C.①②④D.①②③④

【答案】D

【解析】

根據SASABD≌△EBC,可得∠BCE=∠BDA,結合∠BCD=∠BDC可得①②正確;根據角的和差以及三角形外角的性質可得∠DCE=∠DAE,即AEEC,由ADEC,即可得③正確;過EEGBCG點,證明RtBEGRtBEFRtCEGRtAEF,得到BGBFAFCG,利用線段和差即可得到④正確.

解:①∵BDABC的角平分線,

∴∠ABD=∠CBD,

∴在ABDEBC中,

∴△ABD≌△EBCSAS),①正確;

②∵BDABC的角平分線,BDBCBEBA,

∴∠BCD=∠BDC=∠BAE=∠BEA,

∵△ABD≌△EBC,

∴∠BCE=∠BDA,

∴∠BCE+∠BCD=∠BDA+∠BDC180°,②正確;

③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,

∴∠DCE=∠DAE,

∴△ACE為等腰三角形,

AEEC,

∵△ABD≌△EBC,

ADEC,

ADAEEC.③正確;

④過EEGBCG點,

E是∠ABC的角平分線BD上的點,且EFAB,

EFEG(角平分線上的點到角的兩邊的距離相等),

∵在RtBEGRtBEF中,,

RtBEGRtBEFHL),

BGBF,

∵在RtCEGRtAFE中,,

RtCEGRtAEFHL),

AFCG,

BABCBFFABGCGBFBG2BF,④正確.

故選D

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4cm,動點PA點出發(fā),在正方形的邊上沿A→B→C→D運動,設運動的時間為ts),APD的面積為Scm2),St的函數圖象如圖所示,請回答下列問題:

1)點PAB上運動時間為   s,在CD上運動的速度為   cm/s,APD的面積S的最大值為   cm2;

2)將St之間的函數關系式補充完整S

3)請求出運動時間t為幾秒時,APD的面積為6cm2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,ABCD,試解決下列問題:

(1)圖(1)中,1+2+3= ;

(2)圖(2)中,1+2+3+4=

(3)圖(3)中,1+2+3++n=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,平面直角坐標系中,一個點從原點O出發(fā),按向右向上向右向下的順序依次不斷移動,每次移動1個單位,其移動路線如圖所示,第1次移到點A1,第二次移到點A2,第三次移到點A3,,第n次移到點An,則點A2019的坐標是_____________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,在四邊形ABCD中,ADBC.點ECD邊上一點,AEBE分別為∠DAB和∠CBA的平分線.

(1)請你添加一個適當的條件   ,使得四邊形ABCD是平行四邊形,并證明你的結論;

(2)作線段AB的垂直平分線交AB于點O,并以AB為直徑作⊙O(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);

(3)在(2)的條件下,⊙O交邊AD于點F,連接BF,交AE于點G,若AE=4,sinAGF=,求⊙O的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知關于x的一次函數y=mx+2的圖象經過點(﹣2,6).

(1)求m的值;

(2)畫出此函數的圖象;

(3)平移此函數的圖象,使得它與兩坐標軸所圍成的圖形的面積為4,請直接寫出此時圖象所對應的函數關系式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校為了豐富學生的校園生活,準備購進一批籃球和足球.其中籃球的單價比足球的單價多40元,用1500元購進的籃球個數與900元購進的足球個數相等.

1)籃球和足球的單價各是多少元?

2)該校打算用1000元購買籃球和足球,問恰好用完1000元,并且籃球、足球都買有的購買方案有哪幾種?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知△ABC 中,AB=AC=6cm,∠B=∠C,BC=4cm,點 D AB的中點.

(1)如果點 P 在線段 BC 上以 1cm/s 的速度由點 B 向點 C 運動,同時,點 Q 在線段 CA 上由點 C 向點 A 運動.

若點 Q 的運動速度與點 P 的運動速度相等,經過 1 秒后,△BPD △CQP 是否全等,請說明理由;

若點 Q 的運動速度與點 P 的運動速度不相等,當點 Q 的運動速度為多少時,能夠使△BPD △CQP 全等?

(2)若點 Q 以②中的運動速度從點 C 出發(fā),點 P 以原來的運動速度從點 B 同時出發(fā),都逆時針沿△ABC 三邊運動,則經過 后,點 P 與點 Q 第一次在△ABC 的 邊上相遇?(在橫線上直接寫出答案,不必書寫解題過程)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知兩地相距6千米,甲騎自行車從地出發(fā)前往,同時乙從地出發(fā)步行前往.

(1)已知甲的速度為16千米/小時,乙的速度為4千米/小時,求兩人出發(fā)幾小時后甲追上乙;

(2)甲追上乙后,兩人都提高了速度,但甲比乙每小時仍然多行12千米,甲到達地后立即返回,兩人在兩地的中點處相遇,此時離甲追上乙又經過了2小時.兩地相距多少千米.

查看答案和解析>>

同步練習冊答案