【題目】如圖,一次函數(shù)ykx+bk0)與反比例函數(shù)ya0)的圖象在第一象限交于A、B兩點(diǎn),A點(diǎn)的坐標(biāo)為(m,4),B點(diǎn)的坐標(biāo)為(3,2),連接OAOB,過BBDy軸,垂足為D,交OAC.若OCCA

1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;

2)求△AOB的面積;

3)在直線BD上是否存在一點(diǎn)E,使得△AOE是直角三角形,求出所有可能的E點(diǎn)坐標(biāo).

【答案】1y,y=﹣x+6;(2.(3E坐標(biāo)為(﹣,2)或(2)或(,2)或(,2).

【解析】

1)先利用待定系數(shù)法求出反比例函數(shù)解析式,進(jìn)而確定出點(diǎn)A的坐標(biāo),再用待定系數(shù)法求出一次函數(shù)解析式;
2)過點(diǎn)AAFx軸于FOBG,先求出OB的解析式,進(jìn)而求出AG,用三角形的面積公式即可得出結(jié)論.
3)分三種情形分別討論求解即可解決問題;

解:(1)∵點(diǎn)B3,2)在反比例函數(shù)y的圖象上,

a3×26

∴反比例函數(shù)的表達(dá)式為y,

∵點(diǎn)A的縱坐標(biāo)為4

∵點(diǎn)A在反比例函數(shù)y圖象上,

A,4),

,∴,

∴一次函數(shù)的表達(dá)式為y=﹣x+6;

2)如圖1,過點(diǎn)AAFx軸于FOBG,

B32),

∴直線OB的解析式為yx,

G,1),

A4),

AG413,

SAOBSAOG+SABG×3×3

3)如圖2中,

當(dāng)∠AOE190°時(shí),∵直線AC的解析式為yx

∴直線OE1的解析式為y=﹣x,

當(dāng)y2時(shí),x=﹣,

E1(﹣,2).

當(dāng)∠OAE290°時(shí),

直線OE1平行直線OE2

設(shè)直線OE2的解析式為y=﹣x+b,

∴直線過點(diǎn)A,4),則b=

∴直線OE2的解析式為y=﹣x+,

當(dāng)y2時(shí),x

E2,2).

當(dāng)∠OEA90°時(shí),

A,4),∴OA=

ACOCCE

C,2),

∴可得E3,2),E4,2),

綜上所述,滿足條件的點(diǎn)E坐標(biāo)為(﹣,2)或(2)或(,2)或(,2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,若拋物線頂點(diǎn)A的橫坐標(biāo)是,且與y軸交于點(diǎn),點(diǎn)P為拋物線上一點(diǎn).

求拋物線的表達(dá)式;

若將拋物線向下平移4個(gè)單位,點(diǎn)P平移后的對(duì)應(yīng)點(diǎn)為如果,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,的平分線于點(diǎn),過點(diǎn)于點(diǎn),以為直徑作⊙.

(1)求證:是⊙的切線;

(2) AC=3BC=4,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在元旦期間,某商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種商品.

1)已知甲、乙兩種商品的進(jìn)價(jià)分別為30元,70元,該商場(chǎng)購(gòu)進(jìn)甲、乙兩種商品共50件需要2300元,則該商場(chǎng)購(gòu)進(jìn)甲、乙兩種商品各多少件?

2)該商場(chǎng)共投入9500元資金購(gòu)進(jìn)這兩種商品若干件,這兩種商品的進(jìn)價(jià)和售價(jià)如表所示:

進(jìn)價(jià)(元/件)

30

70

售價(jià)(元/件)

50

100

若全部銷售完后可獲利5000元(利潤(rùn)=(售價(jià)﹣進(jìn)價(jià))×銷量),則該商場(chǎng)購(gòu)進(jìn)甲、乙兩種商品各多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,EAD的中點(diǎn),已知DEF的面積為1,則平行四邊形ABCD的面積為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市實(shí)施產(chǎn)業(yè)精準(zhǔn)扶貧,幫助貧困戶承包荒山種植某品種蜜柚.已知該蜜柚的成本價(jià)為6/千克,到了收獲季節(jié)投入市場(chǎng)銷售時(shí),調(diào)查市場(chǎng)行情后,發(fā)現(xiàn)該蜜柚不會(huì)虧本,且每天的銷售量y(千克)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系如圖所示.

1)求yx的函數(shù)關(guān)系式,并寫出x的取值范圍;

2)當(dāng)該品種蜜柚定價(jià)為多少時(shí),每天銷售獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

3)某村農(nóng)戶今年共采摘蜜柚12000千克,若該品種蜜柚的保質(zhì)期為50天,按照(2)的銷售方式,能否在保質(zhì)期內(nèi)全部銷售完這批蜜柚?若能,請(qǐng)說明理由;若不能,應(yīng)定銷售價(jià)為多少元時(shí),既能銷售完又能獲得最大利潤(rùn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)的圖像與邊長(zhǎng)是6的正方形 的兩邊分別相交于兩點(diǎn),的面積為10.若動(dòng)點(diǎn)軸上,則的最小值是_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB4,AD6,點(diǎn)EBC上一點(diǎn),將△ABE沿AE折疊得到△AEF,點(diǎn)HCD上一點(diǎn),將△CEH沿EH折疊得到△EHG,且F落在線段EG上,當(dāng)GFGH時(shí),則BE的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線lx軸,y軸分別交于A,B兩點(diǎn),且與反比例函數(shù)yx0)的圖象交于點(diǎn)C,若SAOBSBOC1,則k=(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

同步練習(xí)冊(cè)答案