【題目】如圖①,已知△ABC是等腰三角形,∠BAC=90°,點D是BC的中點,作正方形DEFG,使點A、C分別在DG和DE上,連接AE、BG.
(1)試猜想線段BG和AE的關系為;
(2)如圖②,將正方形DEFG繞點D按逆時針方向旋轉α(0°<α≤90°),判斷(1)中的結論是否仍然成立,證明你的結論.
【答案】(1)BG=AE.AE⊥BG,理由見解析;(2)成立,理由見解析.
【解析】
(1)由等腰直角三角形的性質及正方形的性質就可以得出△ADE≌△BDG就可以得出結論;
(2)如圖2,連接AD,由等腰直角三角形的性質及正方形的性質就可以得出△ADE≌△BDG就可以得出結論;
(1)結論:BG=AE,BG⊥AE.
理由:如圖1,延長EA交BG于K.
∵△ABC是等腰直角三角形,∠BAC=90°,點D是BC的中點,
∴AD⊥BC,BD=CD,
∴∠ADB=∠ADC=90°.
∵四邊形DEFG是正方形,
∴DE=DG.
在△BDG和△ADE中,
,
∴△ADE≌△BDG(SAS),
∴BG=AE,∠BGD=∠AED,
∵∠GAK=∠DAE,
∴∠AKG=∠ADE=90°,
∴EA⊥BG.
(2)①成立BG=AE.
理由:如圖2,連接AD,延長EA交BG于K,交DG于O.
∵在Rt△BAC中,D為斜邊BC中點,
∴AD=BD,AD⊥BC,
∴∠ADG+∠GDB=90°.
∵四邊形EFGD為正方形,
∴DE=DG,且∠GDE=90°,
∴∠ADG+∠ADE=90°,
∴∠BDG=∠ADE.
在△BDG和△ADE中,
,
∴△BDG≌△ADE(SAS),
∴BG=AE,∠BGD=∠AED,
∵∠GOK=∠DOE,
∴∠OKG=∠ODE=90°,
∴EA⊥BG.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB=AD,那么添加下列一個條件后,仍無法判定△ABC≌△ADC的是( )
A. CB=CD B. ∠BAC=∠DAC C. ∠BCA=∠DCA D. ∠B=∠D=90°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《如果想毀掉一個孩子,就給他一部手機!》這是2017年微信圈一篇熱傳的文章.國際上,法國教育部宣布從 2018 年9月新學期起小學和初中禁止學生使用手機.為了解學生手機使用情況,某學校開展了“手機伴我健康行”主題活動,他們隨機抽取部分學生進行“使用手機目的”和“每周使用手機的時間”的問卷調查,并繪制成如圖①,②的 統(tǒng)計圖,已知“查資料”的人數(shù)是 40人.請你根據以上信息解答下列問題:
(1)在扇形統(tǒng)計圖中,“玩游戲”對應的百分比為______,圓心角度數(shù)是______度;
(2)補全條形統(tǒng)計圖;
(3)該校共有學生2100人,估計每周使用手機時間在2 小時以上(不含2小時)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知拋物線與直線都經過、兩點,該拋物線的頂點為C.
(1)求此拋物線和直線的解析式;
(2)設直線與該拋物線的對稱軸交于點E,在射線上是否存在一點M,過M作x軸的垂線交拋物線于點N,使點M、N、C、E是平行四邊形的四個頂點?若存在,求點M的坐標;若不存在,請說明理由;
(3)設點P是直線下方拋物線上的一動點,當面積最大時,求點P的坐標,并求面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,E,F(xiàn)分別為AD,BC邊上的一點,增加下列條件,不能得出BE∥DF的是( )
A. AE=CF B. BE=DF C. ∠EBF=∠FDE D. ∠BED=∠BFD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,△ABC的位置如圖所示(每個小方格都是邊長為1個單位長度的正方形).
(1)將△ABC沿軸方向向左平移6個單位,畫出平移后得到的△A1B1C1;
(2)將△ABC繞著點O順時針旋轉90°,畫出旋轉后得到的△AB2C2,并直接寫出點B2 、C2的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】邊長為6的等邊△ABC中,點D、E分別在AC、BC邊上,DE∥AB,EC=2.
(1)如圖1,將△DEC沿射線EC方向平移,得到△D′E′C′,邊D′E′與AC的交點為M,邊C′D′與∠ACC′的角平分線交于點N,當CC′多大時,四邊形MCND′為菱形?并說明理由.
(2)如圖2,將△DEC繞點C旋轉∠α(0°<α<360°),得到△D′E′C,連接AD′、BE′.邊D′E′的中點為P.
①在旋轉過程中,AD′和BE′有怎樣的數(shù)量關系?并說明理由;
②連接AP,當AP最大時,求AD′的值.(結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線經過點,與軸交于點.
求這條拋物線的解析式;
如圖1,點P是第三象限內拋物線上的一個動點,當四邊形的面積最大時,求點的坐標;
如圖2,線段的垂直平分線交軸于點,垂足為為拋物線的頂點,在直線上是否存在一點,使的周長最?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為弘揚傳統(tǒng)文化,某校開展了“傳承經典文化,閱讀經典名著”活動.為了解七、八年級學生(七、八年級各有600名學生)的閱讀效果,該校舉行了經典文化知識競賽.現(xiàn)從兩個年級各隨機抽取20名學生的競賽成績(百分制)進行分析,過程如下:
收集數(shù)據:
七年級:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77.
八年級:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.
整理數(shù)據:
七年級 | 0 | 1 | 0 | a | 7 | 1 |
八年級 | 1 | 0 | 0 | 7 | b | 2 |
分析數(shù)據:
平均數(shù) | 眾數(shù) | 中位數(shù) | |
七年級 | 78 | 75 | |
八年級 | 78 | 80.5 |
應用數(shù)據:
(1)由上表填空:a= ,b= ,c= ,d= .
(2)估計該校七、八兩個年級學生在本次競賽中成績在90分以上的共有多少人?
(3)你認為哪個年級的學生對經典文化知識掌握的總體水平較好,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com