(2009•龍巖)如圖,AB、CD是半徑為5的⊙O的兩條弦,AB=8,CD=6,MN是直徑,AB⊥MN于點(diǎn)E,CD⊥MN于點(diǎn)F,P為EF上的任意一點(diǎn),則PA+PC的最小值為   
【答案】分析:A、B兩點(diǎn)關(guān)于MN對(duì)稱,因而PA+PC=PB+PC,即當(dāng)B、C、P在一條直線上時(shí),PA+PC的最小,即BC的值就是PA+PC的最小值
解答:解:連接OA,OB,OC,作CH垂直于AB于H.
根據(jù)垂徑定理,得到BE=AB=4,CF=CD=3,
∴OE===3,
OF===4,
∴CH=OE+OF=3+4=7,
BH=BE+EH=BE+CF=4+3=7,
在直角△BCH中根據(jù)勾股定理得到BC=7,
則PA+PC的最小值為
點(diǎn)評(píng):正確理解BC的長(zhǎng)是PA+PC的最小值,是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2009•龍巖)如圖,拋物線y=x2+mx+n與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),四邊形OBHC為矩形,CH的延長(zhǎng)線交拋物線于點(diǎn)D(5,2),連接BC、AD.
(1)求C點(diǎn)的坐標(biāo)及拋物線的解析式;
(2)將△BCH繞點(diǎn)B按順時(shí)針旋轉(zhuǎn)90°后再沿x軸對(duì)折得到△BEF(點(diǎn)C與點(diǎn)E對(duì)應(yīng)),判斷點(diǎn)E是否落在拋物線上,并說明理由;
(3)設(shè)過點(diǎn)E的直線交AB邊于點(diǎn)P,交CD邊于點(diǎn)Q.問是否存在點(diǎn)P,使直線PQ分梯形ABCD的面積為1:3兩部分?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學(xué)模擬試卷47(河莊鎮(zhèn)中 陳國(guó)亞)(解析版) 題型:解答題

(2009•龍巖)如圖,拋物線y=x2+mx+n與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),四邊形OBHC為矩形,CH的延長(zhǎng)線交拋物線于點(diǎn)D(5,2),連接BC、AD.
(1)求C點(diǎn)的坐標(biāo)及拋物線的解析式;
(2)將△BCH繞點(diǎn)B按順時(shí)針旋轉(zhuǎn)90°后再沿x軸對(duì)折得到△BEF(點(diǎn)C與點(diǎn)E對(duì)應(yīng)),判斷點(diǎn)E是否落在拋物線上,并說明理由;
(3)設(shè)過點(diǎn)E的直線交AB邊于點(diǎn)P,交CD邊于點(diǎn)Q.問是否存在點(diǎn)P,使直線PQ分梯形ABCD的面積為1:3兩部分?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖北省宜昌市夷陵區(qū)中考數(shù)學(xué)適應(yīng)性訓(xùn)練(三)(解析版) 題型:解答題

(2009•龍巖)如圖,拋物線y=x2+mx+n與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),四邊形OBHC為矩形,CH的延長(zhǎng)線交拋物線于點(diǎn)D(5,2),連接BC、AD.
(1)求C點(diǎn)的坐標(biāo)及拋物線的解析式;
(2)將△BCH繞點(diǎn)B按順時(shí)針旋轉(zhuǎn)90°后再沿x軸對(duì)折得到△BEF(點(diǎn)C與點(diǎn)E對(duì)應(yīng)),判斷點(diǎn)E是否落在拋物線上,并說明理由;
(3)設(shè)過點(diǎn)E的直線交AB邊于點(diǎn)P,交CD邊于點(diǎn)Q.問是否存在點(diǎn)P,使直線PQ分梯形ABCD的面積為1:3兩部分?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年福建省龍巖市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•龍巖)如圖,拋物線y=x2+mx+n與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),四邊形OBHC為矩形,CH的延長(zhǎng)線交拋物線于點(diǎn)D(5,2),連接BC、AD.
(1)求C點(diǎn)的坐標(biāo)及拋物線的解析式;
(2)將△BCH繞點(diǎn)B按順時(shí)針旋轉(zhuǎn)90°后再沿x軸對(duì)折得到△BEF(點(diǎn)C與點(diǎn)E對(duì)應(yīng)),判斷點(diǎn)E是否落在拋物線上,并說明理由;
(3)設(shè)過點(diǎn)E的直線交AB邊于點(diǎn)P,交CD邊于點(diǎn)Q.問是否存在點(diǎn)P,使直線PQ分梯形ABCD的面積為1:3兩部分?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(06)(解析版) 題型:填空題

(2009•龍巖)如圖,點(diǎn)B、E、F、C在同一直線上.已知∠A=∠D,∠B=∠C,要使△ABF≌△DCE,需要補(bǔ)充的一個(gè)條件是    (寫出一個(gè)即可).

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊р偓闈涙啞瀹曞弶鎱ㄥ璇蹭壕闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺姈椤忕喖姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐礃椤曆囧煘閹达附鍋愰柛娆忣槹閹瑧绱撴担鍝勵€岄柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷