【題目】如圖,已知△ABC及其外接圓,∠C=90°,AC=10.
(1)若該圓的半徑為5,求∠A的度數;
(2)點M在AB邊上(AM>BM),連接CM并延長交該圓于點D,連接DB,過點C作CE垂直DB的延長線于E.若BE=3,CE=4,試判斷AB與CD是否互相垂直,并說明理由.
科目:初中數學 來源: 題型:
【題目】如圖,直角三角形的直角頂點在坐標原點,∠OAB=30°,若點A在反比例函數y=(x>0)的圖象上,則經過點B的反比例函數解析式為( 。
A. y=﹣ B. y=﹣ C. y=﹣ D. y=
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某文具店銷售甲、乙兩種圓規(guī),當銷售5只甲種、1只乙種圓規(guī),可獲利潤25元,銷售6只甲種、3只乙種圓規(guī),可獲利潤39元.
(1)問該文具店銷售甲、乙兩種圓規(guī),每只的利潤分別是多少元?
(2)在(1)中,文具店共銷售甲、乙兩種圓規(guī)50只,其中甲種圓規(guī)為a只,求文具店所獲得利潤P與a的函數關系式,并求當a≥30時P的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數,關于此函數的圖象及性質,下列結論中不一定成立的是( )
A.該圖象的頂點坐標為B.該圖象與軸的交點為
C.若該圖象經過點,則一定經過點D.當時,隨的增大而增大
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:兩個相似等腰三角形,如果它們的底角有一個公共的頂點,那么把這兩個三角形稱為“關聯(lián)等腰三角形”.如圖,在與中, ,且所以稱與為“關聯(lián)等腰三角形”,設它們的頂角為,連接,則稱會為“關聯(lián)比".
下面是小穎探究“關聯(lián)比”與α之間的關系的思維過程,請閱讀后,解答下列問題:
[特例感知]
當與為“關聯(lián)等腰三角形”,且時,
①在圖1中,若點落在上,則“關聯(lián)比”=
②在圖2中,探究與的關系,并求出“關聯(lián)比”的值.
[類比探究]
如圖3,
①當與為“關聯(lián)等腰三角形”,且時,“關聯(lián)比”=
②猜想:當與為“關聯(lián)等腰三角形”,且時,“關聯(lián)比”= (直接寫出結果,用含的式子表示)
[遷移運用]
如圖4, 與為“關聯(lián)等腰三角形”.若點為邊上一點,且,點為上一動點,求點自點運動至點時,點所經過的路徑長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某社區(qū)組織了以“奔向幸福,‘毽’步如飛”為主題的踢毽子比賽活動,初賽結束后有甲、乙兩個代表隊進入決賽,已知每隊有5名隊員,按團體總數排列名次,在規(guī)定時間內每人踢100個以上(含100)為優(yōu)秀.下表是兩隊各隊員的比賽成績.
1 號 | 2 號 | 3 號 | 4 號 | 5 號 | 總數 | |
甲隊 | 103 | 102 | 98 | 100 | 97 | 500 |
乙隊 | 97 | 99 | 100 | 96 | 108 | 500 |
經統(tǒng)計發(fā)現(xiàn)兩隊5名隊員踢毽子的總個數相等,按照比賽規(guī)則,兩隊獲得并列第一.學習統(tǒng)計知識后,我們可以通過考查數據中的其它信息作為參考,進行綜合評定:
(1)甲、乙兩隊的優(yōu)秀率分別為 ;
(2)甲隊比賽數據的中位數為 個;乙隊比賽數據的中位數為 個;
(3)分別計算甲、乙兩隊比賽數據的方差;
(4)根據以上信息,你認為綜合評定哪一個隊的成績好?簡述理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點是線段上一點,,以點為圓心,的長為半徑作⊙,過點作的垂線交⊙于,兩點,點在線段的延長線上,連接交⊙于點,以,為邊作.
(1)求證:是⊙的切線;
(2)若,求四邊形與⊙重疊部分的面積;
(3)若,,連接,求和的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠B=60°,AB=2,M為邊AB的中點,N為邊BC上一動點(不與點B重合),將△BMN沿直線MN折疊,使點B落在點E處,連接DE、CE,當△CDE為等腰三角形時,BN的長為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,,AC、BD交于點O,點P、Q分別是AB、BD上的動點,點P的運動路徑是,點Q的運動路徑是BD,兩點的運動速度相同并且同時結束.若點P的行程為x,的面積為y,則y關于x的函數圖象大致為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com