將現(xiàn)有一根長為1的鐵絲.
(1)若把它截成四段然后圍成圖1所示的“口”形的矩形框,當矩形框的長a與矩形框的寬b滿足a=
1
1
b時所圍成的矩形框面積最大.
(2)若把它截成六段,①可以圍成圖2所示的“目”形的矩形框,當矩形框的長a與矩形框的寬b滿足a=
2
2
b時所圍成的矩形框面積最大; ②可以圍成圖3所示的“田”形矩形框,當矩形框的長a與矩形框的寬b滿足a=
1
1
b時所圍成的矩形框面積最大.
分析:(1)根據(jù)長度為1,可得出a與b的關系式,然后可表示出圖1的面積,利用配方法求最值即可;
(2)根據(jù)長度為1,可得出a與b的關系式,然后可表示出圖2、圖3的面積,利用配方法求最值即可;
解答:解:(1)由題意得,2a+2b=1,則b=
1-2a
2

此時S=ab=a×
1-2a
2
=-a2+
1
2
a=-(a-
1
4
2+
1
16

當a=
1
4
時,面積S最大,則a=
1
4
,b=
1
4
,
即a=b時,面積最大;
(2)①由題意得,2a+4b=1,則b=
1-2a
4
,
此時S=ab=a×
1-2a
4
=-
1
2
a2+
1
4
a=-
1
2
(a-
1
4
2+
1
8
,
當a=
1
4
時,面積S最大,則a=
1
4
,b=
1
8

即a=2b時,面積最大;
②由題意得,3a+3b=1,則b=
1-3a
3
,
此時S=ab=a×
1-3a
3
=-a2+
1
3
a=-(a-
1
6
2+
1
36

當a=
1
6
時,面積S最大,則a=
1
6
,b=
1
6
,
即a=b時,面積最大.
故答案為:1;2、1.
點評:本題考查了二次函數(shù)的應用,解答本題的關鍵是根據(jù)鐵絲長度為1得出a與b的關系式,注意掌握配方法求函數(shù)的最值,難度一般.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

現(xiàn)有一根長為1的鐵絲:
①若把它圍成圖1所示的矩形框,當矩形框的長a與矩形框的寬b滿足a=
 
b時所圍成的矩形框面積最大;
②若把它圍成圖2所示的矩形框,當矩形框的長a與矩形框的寬b滿足a=
 
b時所圍成的矩形框面積最大;
③若把它圍成圖n所示的矩形框(圖中共有n+1條寬),當矩形框的長a與矩形框的寬b滿足a=
 
b時所圍成的矩形框面積最大.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

將現(xiàn)有一根長為1的鐵絲.
(1)若把它截成四段然后圍成圖1所示的“口”形的矩形框,當矩形框的長a與矩形框的寬b滿足a=______b時所圍成的矩形框面積最大.
(2)若把它截成六段,①可以圍成圖2所示的“目”形的矩形框,當矩形框的長a與矩形框的寬b滿足a=______b時所圍成的矩形框面積最大; ②可以圍成圖3所示的“田”形矩形框,當矩形框的長a與矩形框的寬b滿足a=______b時所圍成的矩形框面積最大.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年浙江省中考數(shù)學模擬試卷(一)(解析版) 題型:填空題

將現(xiàn)有一根長為1的鐵絲.
(1)若把它截成四段然后圍成圖1所示的“口”形的矩形框,當矩形框的長a與矩形框的寬b滿足a=    b時所圍成的矩形框面積最大.
(2)若把它截成六段,①可以圍成圖2所示的“目”形的矩形框,當矩形框的長a與矩形框的寬b滿足a=    b時所圍成的矩形框面積最大; ②可以圍成圖3所示的“田”形矩形框,當矩形框的長a與矩形框的寬b滿足a=    b時所圍成的矩形框面積最大.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年易學教育中考數(shù)學模擬試卷(20)(解析版) 題型:填空題

現(xiàn)有一根長為1的鐵絲:
①若把它圍成圖1所示的矩形框,當矩形框的長a與矩形框的寬b滿足a=    b時所圍成的矩形框面積最大;
②若把它圍成圖2所示的矩形框,當矩形框的長a與矩形框的寬b滿足a=    b時所圍成的矩形框面積最大;
③若把它圍成圖n所示的矩形框(圖中共有n+1條寬),當矩形框的長a與矩形框的寬b滿足a=    b時所圍成的矩形框面積最大.

查看答案和解析>>

同步練習冊答案