【題目】(本題14分)如圖,已知線段AB=2,MN⊥AB于點M,且AM=BM,P是射線MN上一動點,E,D分別是PA,PB的中點,過點A,M,D的圓與BP的另一交點C(點C在線段BD上),連結(jié)AC,DE.
(1)當∠APB=28°時,求∠B和的度數(shù);
(2)求證:AC=AB。
(3)在點P的運動過程中
①當MP=4時,取四邊形ACDE一邊的兩端點和線段MP上一點Q,若以這三點為頂點的三角形是直角三角形,且Q為銳角頂點,求所有滿足條件的MQ的值;
②記AP與圓的另一個交點為F,將點F繞點D旋轉(zhuǎn)90°得到點G,當點G恰好落在MN上時,連結(jié)AG,CG,DG,EG,直接寫出△ACG和△DEG的面積之比.
【答案】(1) ∠B=76°,56°;(2)證明見解析;(3)①或或;②
【解析】
試題分析:(1)根據(jù)三角形ABP是等腰三角形,可得∠B的度數(shù),再連接MD,根據(jù)MD為△PAB的中位線,可得∠MDB=∠APB=28°,進而得到=2∠MDB=56°;
(2)根據(jù)∠BAP=∠ACB,∠BAP=∠B,即可得到∠ACB=∠B,進而得出AC=AB;
(3)①記MP與圓的另一個交點為R,根據(jù)AM2+MR2=AR2=AC2+CR2,即可得到PR=,MR=,再根據(jù)Q為直角三角形銳角頂點,分四種情況進行討論:當∠ACQ=90°時,當∠QCD=90°時,當∠QDC=90°時,當∠AEQ=90°時,即可求得MQ的值為或或;
②先判定△DEG是等邊三角形,再根據(jù)GMD=∠GDM,得到GM=GD=1,過C作CH⊥AB于H,由∠BAC=30°可得CH=AC=1=MG,即可得到CG=MH=﹣1,進而得出S△ACG=CG×CH=,再根據(jù)S△DEG=,即可得到△ACG和△DEG的面積之比.
試題解析:(1)∵MN⊥AB,AM=BM,
∴PA=PB,
∴∠PAB=∠B,
∵∠APB=28°,
∴∠B=76°,
如圖1,連接MD,
∵MD為△PAB的中位線,
∴MD∥AP,
∴∠MDB=∠APB=28°,
∴=2∠MDB=56°;
(2)∵∠BAC=∠MDC=∠APB,
又∵∠BAP=180°﹣∠APB﹣∠B,∠ACB=180°﹣∠BAC﹣∠B,
∴∠BAP=∠ACB,
∵∠BAP=∠B,
∴∠ACB=∠B,
∴AC=AB;
(3)①如圖2,記MP與圓的另一個交點為R,
∵MD是Rt△MBP的中線,
∴DM=DP,
∴∠DPM=∠DMP=∠RCD,
∴RC=RP,
∵∠ACR=∠AMR=90°,
∴AM2+MR2=AR2=AC2+CR2,
∴12+MR2=22+PR2,
∴12+(4﹣PR)2=22+PR2,
∴PR=,
∴MR=,
Ⅰ.當∠ACQ=90°時,AQ為圓的直徑,
∴Q與R重合,
∴MQ=MR=;
Ⅱ.如圖3,當∠QCD=90°時,
在Rt△QCP中,PQ=2PR=,
∴MQ=;
Ⅲ.如圖4,當∠QDC=90°時,
∵BM=1,MP=4,
∴BP=,
∴DP=BP=,
∵cos∠MPB=,
∴PQ=,
∴MQ=;
Ⅳ.如圖5,當∠AEQ=90°時,
由對稱性可得∠AEQ=∠BDQ=90°,
∴MQ=;
綜上所述,MQ的值為或或;
②△ACG和△DEG的面積之比為.
理由:如圖6,∵DM∥AF,
∴DF=AM=DE=1,
又由對稱性可得GE=GD,
∴△DEG是等邊三角形,
∴∠EDF=90°﹣60°=30°,
∴∠DEF=75°=∠MDE,
∴∠GDM=75°﹣60°=15°,
∴∠GMD=∠PGD﹣∠GDM=15°,
∴GMD=∠GDM,
∴GM=GD=1,
過C作CH⊥AB于H,
由∠BAC=30°可得CH=AC=AB=1=MG,AH=,
∴CG=MH=﹣1,
∴S△ACG=CG×CH=,
∵S△DEG=,
∴S△ACG:S△DEG=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,對角線AC、BD相交于點O,點E是AD的中點,如果OE=2,AD=6,那么ABCD的周長是( )
A.20
B.12
C.24
D.8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知平面上四點A(0,0),B(10,0),C(12,6),D(2,6),直線y=mx﹣3m+6將四邊形ABCD分成面積相等的兩部分,則m的值為( )
A.
B.﹣1
C.2
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=kx+b經(jīng)過點A(﹣30,0)和點B(0,15),直線y=x+5與直線y=kx+b相交于點P,與y軸交于點C.
(1)求直線y=kx+b的解析式.
(2)求△PBC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形OABC的邊OA,OC分別在軸、軸上,點B在第一象限,點D在邊BC上,且∠AOD=30°,四邊形OA′B′D與四邊形OABD關(guān)于直線OD對稱(點A′和A,B′和B分別對應),若AB=1,反比例函數(shù)的圖象恰好經(jīng)過點 A′,B,則的值為_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法不正確的是( )
A. 面積相等的兩個三角形全等 B. 全等三角形對應邊上的中線相等
C. 全等三角形的對應角的角平分線相等 D. 全等三角形的對應邊上的高相等
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題10分)如圖,過拋物線上一點A作軸的平行線,交拋物線于另一點B,交軸于點C,已知點A的橫坐標為.
(1)求拋物線的對稱軸和點B的坐標;
(2)在AB上任取一點P,連結(jié)OP,作點C關(guān)于直線OP的對稱點D;
①連結(jié)BD,求BD的最小值;
②當點D落在拋物線的對稱軸上,且在軸上方時,求直線PD的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人在一條筆直的道路上相向而行,甲騎自行車從A地到B地,乙駕車從B地到A地,他們分別以不同的速度勻速行駛,已知甲先出發(fā)6分鐘后,乙才出發(fā),在整個過程中,甲、乙兩人的距離y(千米)與甲出發(fā)的時間x(分)之間的關(guān)系如圖所示,當乙到達終點A時,甲還需 分鐘到達終點B.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com