如圖,正方形EFGH的頂點(diǎn)在邊長(zhǎng)為a的正方形ABCD的邊上,若AE=x,正方形EFGH的面積為y.
(1)求出y與x之間的函數(shù)關(guān)系式;
(2)正方形EFGH有沒(méi)有最大面積?若有,試確定E點(diǎn)位置;若沒(méi)有,說(shuō)明理由.
(1)y=2x2-2ax+a2 (2) 有.當(dāng)點(diǎn)E是AB的中點(diǎn)時(shí),面積最大.
【解析】本題考查了二次函數(shù)的應(yīng)用.
(1)先由AAS證明△AEF≌△DHE,得出AE=DH=x米,AF=DE=(a-x)米,再根據(jù)勾股定理,求出EF2,即可得到S與x之間的函數(shù)關(guān)系式;
(2)先將(1)中求得的函數(shù)關(guān)系式運(yùn)用配方法寫(xiě)成頂點(diǎn)式,再根據(jù)二次函數(shù)的性質(zhì)即可求解.
解:∵四邊形ABCD是邊長(zhǎng)為a米的正方形,
∴∠A=∠D=90°,AD= a米.
∵四邊形EFGH為正方形,
∴∠FEH=90°,EF=EH.
在△AEF與△DHE中,
∵∠A=∠D,∠AEF=∠DHE=90°-∠DEH,EF=EH
∴△AEF≌△DHE(AAS),
∴AE=DH=x米,AF=DE=(a-x)米,
∴y=EF2=AE2+AF2=x2+(a-x)2=2x2-2ax+ a2,
即y=2x2-2ax+ a2;
(2)∵y=2x2-2ax+ a2=2(x-)2+,
∴當(dāng)x=時(shí),S有最大值.
故當(dāng)點(diǎn)E是AB的中點(diǎn)時(shí),面積最大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
. |
ab |
. |
ab |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年貴州省遵義市中考模擬數(shù)學(xué)卷(解析版) 題型:解答題
已知二次函數(shù)的圖象與x軸分別交于點(diǎn)A、B,與y軸交于點(diǎn)C.點(diǎn)D是拋物線的頂點(diǎn).
(1)如圖①,連接AC,將△OAC沿直線AC翻折,若點(diǎn)O的對(duì)應(yīng)點(diǎn)O'恰好落在該拋物線的對(duì)稱軸上,求實(shí)數(shù)a的值;
(2)如圖②,在正方形EFGH中,點(diǎn)E、F的坐標(biāo)分別是(4,4)、(4,3),邊HG位于邊EF的右側(cè).若點(diǎn)P是邊EF或邊FG上的任意一點(diǎn),求證四條線段PA、PB、PC、PD不能構(gòu)成平行四邊形;
(3)如圖②,正方形EFGH向左平移個(gè)單位長(zhǎng)度時(shí),正方形EFGH上是否存在一點(diǎn)P(包括正方形的邊界),使得四條線段PA、PB、PC、PD能夠構(gòu)成平行四邊形?如果存在,請(qǐng)求出的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com