相關習題
 0  128157  128165  128171  128175  128181  128183  128187  128193  128195  128201  128207  128211  128213  128217  128223  128225  128231  128235  128237  128241  128243  128247  128249  128251  128252  128253  128255  128256  128257  128259  128261  128265  128267  128271  128273  128277  128283  128285  128291  128295  128297  128301  128307  128313  128315  128321  128325  128327  128333  128337  128343  128351  366461 

科目: 來源:第3章《直線與圓、圓與圓的位置關系》中考題集(39):3.3 圓與圓的位置關系(解析版) 題型:解答題

已知⊙O1與⊙O2相交于A,B,且⊙O1的半徑為3cm,⊙O2的半徑為5cm.
(1)過點B作CD⊥AB分別交⊙O1和⊙O2于C,D兩點,連接AC,AD,如圖(1),試求的值;
(2)過點B任畫一條直線分別交⊙O1和⊙O2于E,F(xiàn),連接AE和AF,如圖(2),試求的值;
(3)在解答本題的過程中用到的數(shù)學思想方法是______.

查看答案和解析>>

科目: 來源:第3章《直線與圓、圓與圓的位置關系》中考題集(39):3.3 圓與圓的位置關系(解析版) 題型:解答題

已知:⊙O1與⊙O2相交于A、B兩點,⊙O1的切線AC交⊙O2于點C.直線EF過點B交⊙O1于點E,交⊙O2于點F.
(1)若直線EF交弦AC于點K時(如圖1).求證:AE∥CF;
(2)若直線EF交弦AC的延長線于點時(如圖2).求證:DA•DF=DC•DE;
(3)若直線EF交弦AC的反向延長線于點(在圖3自作),試判斷(1)、(2)中的結論是否成立并證明你的正確判斷.

查看答案和解析>>

科目: 來源:第3章《直線與圓、圓與圓的位置關系》中考題集(39):3.3 圓與圓的位置關系(解析版) 題型:解答題

如圖,有一個圓O和兩個正六邊形T1,T2. T1的6個頂點都在圓周上,T2的6條邊都和圓O相切(我們稱T1,T2分別為圓O的內接正六邊形和外切正六邊形).
(1)設T1,T2的邊長分別為a,b,圓O的半徑為r,求r:a及r:b的值;
(2)求正六邊形T1,T2的面積比S1:S2的值.

查看答案和解析>>

科目: 來源:第3章《直線與圓、圓與圓的位置關系》中考題集(39):3.3 圓與圓的位置關系(解析版) 題型:解答題

(1)操作:如圖2,O是邊長為a的正方形ABCD的中心,將一塊半徑足夠長、圓心角為直角的扇形紙板的圓心放在O點處,并將紙板繞O點旋轉.求證:正方形ABCD的邊被紙板覆蓋部分的總長度為定值a.
(2)思考:如圖1,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正三角形或邊長為a的正五邊形的中心O點處,并將紙板繞O點旋轉.當扇形紙板的圓心角為______時,正三角形的邊被紙板覆蓋部分的總長度為定值a;如圖3,當扇形紙板的圓心角為______時,正五邊形的邊被紙板覆蓋部分的總長度為定值a.(直接填空)
(3)探究:一般地,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正n邊形的中心O點處,并將紙板繞O點旋轉,當扇形紙板的圓心角為______度時,正n邊形的邊被紙板覆蓋部分的總長度為定值a;這時正n邊形被紙板覆蓋部分的面積是否也為定值?若為定值,寫出它與正n邊形面積S之間的關系(不需證明);若不是定值,請說明理由.

查看答案和解析>>

科目: 來源:第3章《直線與圓、圓與圓的位置關系》中考題集(39):3.3 圓與圓的位置關系(解析版) 題型:解答題

如圖,六邊形ABCDEF內接于半徑為r(常數(shù))的⊙O,其中AD為直徑,且AB=CD=DE=FA.
(1)當∠BAD=75°時,求的長;
(2)求證:BC∥AD∥FE;
(3)設AB=x,求六邊形ABCDEF的周長L關于x的函數(shù)關系式,并指出x為何值時,L取得最大值.

查看答案和解析>>

科目: 來源:第3章《直線與圓、圓與圓的位置關系》中考題集(39):3.3 圓與圓的位置關系(解析版) 題型:解答題

如圖,在正五邊形ABCDE中,連接對角線AC,AD和CE,AD交CE于F.
(1)請列出圖中兩對全等三角形______,______.(不另外添加輔助線)
(2)請選擇所列舉的一對全等三角形加以證明.

查看答案和解析>>

科目: 來源:第3章《直線與圓、圓與圓的位置關系》中考題集(39):3.3 圓與圓的位置關系(解析版) 題型:解答題

已知多邊形ABDEC是由邊長為2的等邊三角形ABC和正方形BDEC組成,一圓過A、D、E三點,求該圓半徑的長.

查看答案和解析>>

科目: 來源:第3章《直線與圓、圓與圓的位置關系》中考題集(39):3.3 圓與圓的位置關系(解析版) 題型:解答題

閱讀材料并解答問題:
與正三角形各邊都相切的圓叫做正三角形的內切圓,與正四邊形各邊都相切的圓叫做正四邊形的內切圓,與正n邊形各邊都相切的圓叫做正n邊形的內切圓,設正n(n≥3)邊形的面積為S正n邊形,其內切圓的半徑為r,試探索正n邊形的面積.

(1)如圖1,當n=3時,設AB切⊙P于點C,連接OC,OA,OB,
∴OC⊥AB,
∴OA=OB,
∴∠AOC=∠AOB,∴AB=2BC.
在Rt△AOC中,
∵∠AOC==60°,OC=r,
∴AC=r•tan60°,∴AB=2r•tan60°,
∴S△OAB=•r•2r•tan60°=r2tan60°,
∴S正三角形=3S△OAB=3r2•tan60度.
(2)如圖2,當n=4時,仿照(1)中的方法和過程可求得:S正四邊形=4S△OAB=______;
(3)如圖3,當n=5時,仿照(1)中的方法和過程求S正五邊形;
(4)如圖4,根據(jù)以上探索過程,請直接寫出S正n邊形=______.

查看答案和解析>>

科目: 來源:第3章《直線與圓、圓與圓的位置關系》中考題集(39):3.3 圓與圓的位置關系(解析版) 題型:解答題

如圖1、圖2分別是兩個相同正方形、正六邊形,其中一個正多邊形的頂點在另一個正多邊形外接圓圓心O處.
(1)求圖1中,重疊部分面積與陰影部分面積之比;
(2)求圖2中,重疊部分面積與陰影部分面積之比(直接出答案);
(3)根據(jù)前面探索和圖3,你能否將本題推廣到一般的正n邊形情況,(n為大于2的偶數(shù))若能,寫出推廣問題和結論;若不能,請說明理由.

查看答案和解析>>

科目: 來源:第3章《直線與圓、圓與圓的位置關系》中考題集(39):3.3 圓與圓的位置關系(解析版) 題型:解答題

如圖,已知邊長為2cm的正六邊形ABCDEF,點A1,B1,C1,D1,E1,F(xiàn)1分別為所在各邊的中點,求圖中陰影部分的總面積S.

查看答案和解析>>

同步練習冊答案