相關習題
 0  146664  146672  146678  146682  146688  146690  146694  146700  146702  146708  146714  146718  146720  146724  146730  146732  146738  146742  146744  146748  146750  146754  146756  146758  146759  146760  146762  146763  146764  146766  146768  146772  146774  146778  146780  146784  146790  146792  146798  146802  146804  146808  146814  146820  146822  146828  146832  146834  146840  146844  146850  146858  366461 

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(35):23.5 二次函數(shù)的應用(解析版) 題型:解答題

定義[p,q]為一次函數(shù)y=px+q的特征數(shù).
(1)若特征數(shù)是[2,k-2]的一次函數(shù)為正比例函數(shù),求k的值;
(2)設點A,B分別為拋物線y=(x+m)(x-2)與x,y軸的交點,其中m>0,且△OAB的面積為4,O為原點,求圖象過A,B兩點的一次函數(shù)的特征數(shù).

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(35):23.5 二次函數(shù)的應用(解析版) 題型:解答題

正方形ABCD的邊長為2,E是射線CD上的動點(不與點D重合),直線AE交直線BC于點G,∠BAE的平分線交射線BC于點O.
(1)如圖,當CE=時,求線段BG的長;
(2)當點O在線段BC上時,設,BO=y,求y關于x的函數(shù)解析式;
(3)當CE=2ED時,求線段BO的長.

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(35):23.5 二次函數(shù)的應用(解析版) 題型:解答題

如圖,在平面直角坐標系中,點O為坐標原點,以點A(0,-3)為圓心,5為半徑作圓A,交x軸于B,C兩點,交y軸于點D,E兩點.
(1)求點B,C,D的坐標;
(2)如果一個二次函數(shù)圖象經過B,C,D三點,求這個二次函數(shù)解析式;
(3)P為x軸正半軸上的一點,過點P作與圓A相離并且與x軸垂直的直線,交上述二次函數(shù)圖象于點F,當△CPF中一個內角的正切之為時,求點P的坐標.

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(35):23.5 二次函數(shù)的應用(解析版) 題型:解答題

如圖,已知直線l1的解析式為y=3x+6,直線l1與x軸,y軸分別相交于A,B兩點,直線l2經過B,C兩點,點C的坐標為(8,0),又已知點P在x軸上從點A向點C移動,點Q在直線l2從點C向點B移動.點P,Q同時出發(fā),且移動的速度都為每秒1個單位長度,設移動時間為t秒(1<t<10).
(1)求直線l2的解析式;
(2)設△PCQ的面積為S,請求出S關于t的函數(shù)關系式;
(3)試探究:當t為何值時,△PCQ為等腰三角形?

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(35):23.5 二次函數(shù)的應用(解析版) 題型:解答題

如圖,拋物線y=x2+bx-2與x軸交于A、B兩點,與y軸交于C點,且A(-1,0).
(1)求拋物線的解析式及頂點D的坐標;
(2)判斷△ABC的形狀,證明你的結論;
(3)點M(m,0)是x軸上的一個動點,當MC+MD的值最小時,求m的值.
[注:拋物線y=ax2+bx+c的頂點坐標為(-).].

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(35):23.5 二次函數(shù)的應用(解析版) 題型:解答題

一條拋物線y=x2+mx+n經過點(0,3)與(4,3).
(1)求這條拋物線的解析式,并寫出它的頂點坐標;
(2)現(xiàn)有一半徑為1,圓心P在拋物線上運動的動圓,當⊙P與坐標軸相切時,求圓心P的坐標;
(3)⊙P能與兩坐標軸都相切嗎?如果不能,試通過上下平移拋物線y=x2+mx+n,使⊙P與兩坐標軸都相切.(要說明平移方法)

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(35):23.5 二次函數(shù)的應用(解析版) 題型:解答題

如圖:已知在等腰直角三角形ABC中,∠C=90°,AC=BC=2,將一個含30°的直角三角形DEF的最小內角所在的頂點D與直角三角形ABC的頂點C重合,當△DEF繞著點C旋轉時,較長的直角邊和斜邊始終與線段BA交于G,H兩點(G,H可以與B,A重合)
(1)如圖(1),當∠BCF等于多少度時,△BCG≌△ACH?請給予證明;
(2)如圖(2),設GH=x,陰影部分(兩三角形重疊部分)面積為y,寫出y與x的函數(shù)關系式;當x為何值時,y最大,并求出最大值.(結果保留根號)

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(35):23.5 二次函數(shù)的應用(解析版) 題型:解答題

如圖,拋物線y=ax2+bx+c與x軸交于A、B兩點(點A在點B左側),與y軸交于點C,且當x=O和x=4時,y的值相等.直線y=4x-16與這條拋物線相交于兩點,其中一點的橫坐標是3,另一點是這條拋物線的頂點M.
(1)求這條拋物線的解析式;
(2)P為線段OM上一點,過點P作PQ⊥x軸于點Q.若點P在線段OM上運動(點P不與點O重合,但可以與點M重合),設OQ的長為t,四邊形PQCO的面積為S,求S與t之間的函數(shù)關系式及自變量t的取值范圍;
(3)隨著點P的運動,四邊形PQCO的面積S有最大值嗎?如果S有最大值,請求出S的最大值,并指出點Q的具體位置和四邊形PQCO的特殊形狀;如果S沒有最大值,請簡要說明理由;
(4)隨著點P的運動,是否存在t的某個值,能滿足PO=OC?如果存在,請求出t的值.

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(35):23.5 二次函數(shù)的應用(解析版) 題型:解答題

如圖:拋物線經過A(-3,0)、B(0,4)、C(4,0)三點.
(1)求拋物線的解析式.
(2)已知AD=AB(D在線段AC上),有一動點P從點A沿線段AC以每秒1個單位長度的速度移動;同時另一個動點Q以某一速度從點B沿線段BC移動,經過t秒的移動,線段PQ被BD垂直平分,求t的值;
(3)在(2)的情況下,拋物線的對稱軸上是否存在一點M,使MQ+MC有最小值?若存在,請求出點M的坐標;若不存在,請說明理由.(注:拋物線y=ax2+bx+c的對稱軸為x=-

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(35):23.5 二次函數(shù)的應用(解析版) 題型:解答題

如圖,拋物線c1:y=x2-2x-3與x軸交于A、B兩點(點A在點B的左側),與y軸交于點C.點P為線段BC上一點,過點P作直線l⊥x軸于點F,交拋物線c1點E.
(1)求A、B、C三點的坐標;
(2)當點P在線段BC上運動時,求線段PE長的最大值;
(3)當PE為最大值時,把拋物線c1向右平移得到拋物線c2,拋物線c2與線段BE交于點M,若直線CM把△BCE的面積分為1:2兩部分,則拋物線c1應向右平移幾個單位長度可得到拋物線c2?

查看答案和解析>>

同步練習冊答案