相關(guān)習(xí)題
 0  146700  146708  146714  146718  146724  146726  146730  146736  146738  146744  146750  146754  146756  146760  146766  146768  146774  146778  146780  146784  146786  146790  146792  146794  146795  146796  146798  146799  146800  146802  146804  146808  146810  146814  146816  146820  146826  146828  146834  146838  146840  146844  146850  146856  146858  146864  146868  146870  146876  146880  146886  146894  366461 

科目: 來(lái)源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(23):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

天羽服裝廠(chǎng)生產(chǎn)M、N型兩種服裝,受資金及規(guī)模限制,每天最多只能用A種面料68米和B種面料62米生產(chǎn)M、N型兩種服裝共80套.已知M、N型服裝每套所需面料和成本如下表,設(shè)每天生產(chǎn)M型服裝x套.
AB成本
M型1.1m0.4m100元
N型0.6m0.9m80元
(1)若要每天成本不高于7200元,則該廠(chǎng)每天生產(chǎn)M型服裝最多多少套,最少多少套?
(2)經(jīng)市場(chǎng)調(diào)查,生產(chǎn)的M、N型服裝有兩種銷(xiāo)售方案(假設(shè)每天生產(chǎn)的服裝都能全部售出).
方案Ⅰ:兩種型號(hào)服裝都在本市銷(xiāo)售,M型180元/件、N型120元/件;
方案Ⅱ:N型服裝在本市銷(xiāo)售,120元/件,M型服裝批發(fā)給H市服裝商,其每件的批發(fā)價(jià)y(元)與批量x(件)之間的關(guān)系如圖所示.
如果你是廠(chǎng)長(zhǎng),應(yīng)采用哪種銷(xiāo)售方案可使每天獲利最大,最大利潤(rùn)是多少?并確定相應(yīng)的生產(chǎn)方案.

查看答案和解析>>

科目: 來(lái)源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(23):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某商業(yè)集團(tuán)新建一小車(chē)停車(chē)場(chǎng),經(jīng)測(cè)算,此停車(chē)場(chǎng)每天需固定支出的費(fèi)用(設(shè)施維修費(fèi)、車(chē)輛管理人員工資等)為800元.為制定合理的收費(fèi)標(biāo)準(zhǔn),該集團(tuán)對(duì)一段時(shí)間每天小車(chē)停放輛次與每輛次小車(chē)的收費(fèi)情況進(jìn)行了調(diào)查,發(fā)現(xiàn)每輛次小車(chē)的停車(chē)費(fèi)不超過(guò)5元時(shí),每天來(lái)此處停放的小車(chē)可達(dá)1440輛次;若停車(chē)費(fèi)超過(guò)5元,則每超過(guò)1元,每天來(lái)此處停放的小車(chē)就減少120輛次.為便于結(jié)算,規(guī)定每輛次小車(chē)的停車(chē)費(fèi)x(元)只取整數(shù),用y(元)表示此停車(chē)場(chǎng)的日凈收入,且要求日凈收入不低于2512元.(日凈收入=每天共收取的停車(chē)費(fèi)-每天的固定支出)
(1)當(dāng)x≤5時(shí),寫(xiě)出y與x之間的關(guān)系式,并說(shuō)明每輛小車(chē)的停車(chē)費(fèi)最少不低于多少元;
(2)當(dāng)x>5時(shí),寫(xiě)出y與x之間的函數(shù)關(guān)系式(不必寫(xiě)出x的取值范圍);
(3)該集團(tuán)要求此停車(chē)場(chǎng)既要吸引客戶(hù),使每天小車(chē)停放的輛次較多,又要有較大的日凈收入.按此要求,每輛次小車(chē)的停車(chē)費(fèi)應(yīng)定為多少元?此時(shí)日凈收入是多少?

查看答案和解析>>

科目: 來(lái)源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(23):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某農(nóng)戶(hù)計(jì)劃利用現(xiàn)有的一面墻再修四面墻,建造如圖所示的長(zhǎng)方體水池,培育不同品種的魚(yú)苗.他已備足可以修高為1.5m、長(zhǎng)18m的墻的材料準(zhǔn)備施工,設(shè)圖中與現(xiàn)有一面墻垂直的三面墻的長(zhǎng)度都為xm,即AD=EF=BC=xm.(不考慮墻的厚度)
(1)若想水池的總?cè)莘e為36m3,x應(yīng)等于多少?
(2)求水池的總?cè)莘eV與x的函數(shù)關(guān)系式,并直接寫(xiě)出x的取值范圍;
(3)若想使水池的總?cè)莘eV最大,x應(yīng)為多少?最大容積是多少?

查看答案和解析>>

科目: 來(lái)源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(23):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

為了改善小區(qū)環(huán)境,某小區(qū)決定要在一塊一邊靠墻(墻長(zhǎng)25m)的空地上修建一個(gè)矩形綠化帶ABCD,綠化帶一邊靠墻,另三邊用總長(zhǎng)為40m的柵欄圍。ㄈ鐖D4).若設(shè)綠化帶的BC邊長(zhǎng)為xm,綠化帶的面積為ym2
(1)求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)當(dāng)x為何值時(shí),滿(mǎn)足條件的綠化帶的面積最大.

查看答案和解析>>

科目: 來(lái)源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(23):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

容積率t是指在房地產(chǎn)開(kāi)發(fā)中建筑面積與用地面積之比,即t=,為充分利用土地資源,更好地解決人們的住房需求,并適當(dāng)?shù)目刂平ㄖ锏母叨,一般地容積率t不小于1且不大于8.一房地產(chǎn)開(kāi)發(fā)商在開(kāi)發(fā)某小區(qū)時(shí),結(jié)合往年開(kāi)發(fā)經(jīng)驗(yàn)知,建筑面積M(m2)與容積率t的關(guān)系可近似地用如圖(1)中的線(xiàn)段l來(lái)表示;1 m2建筑面積上的資金投入Q(萬(wàn)元)與容積率t的關(guān)系可近似地用如圖(2)中的一段拋物線(xiàn)段c來(lái)表示.
(Ⅰ)試求圖(1)中線(xiàn)段l的函數(shù)關(guān)系式,并求出開(kāi)發(fā)該小區(qū)的用地面積;
(Ⅱ)求出圖(2)中拋物線(xiàn)段c的函數(shù)關(guān)系式.

查看答案和解析>>

科目: 來(lái)源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(23):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某種日記本的專(zhuān)賣(mài)柜臺(tái),每天柜臺(tái)的租金,人員工資等固定費(fèi)用為160元,該日記本每本進(jìn)價(jià)是4元,規(guī)定銷(xiāo)售單價(jià)不得高于8元/本,也不得低于4元/本,調(diào)查發(fā)現(xiàn)日均銷(xiāo)售量y(本)與銷(xiāo)售單價(jià)x(元)的函數(shù)圖象如圖線(xiàn)段AB.
(1)求日均銷(xiāo)售量y(本)與銷(xiāo)售單價(jià)x(元)的函數(shù)關(guān)系式;
(2)當(dāng)銷(xiāo)售單價(jià)為多少元時(shí),日均獲利最多,獲得最多是多少元?

查看答案和解析>>

科目: 來(lái)源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(23):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

用長(zhǎng)為12 m的籬笆,一邊利用足夠長(zhǎng)的墻圍出一塊苗圃.如圖,圍出的苗圃是五邊形ABCDE,AE⊥AB,BC⊥AB,∠C=∠D=∠E.設(shè)CD=DE=xm,五邊形ABCDE的面積為S m2.問(wèn)當(dāng)x取什么值時(shí),S最大并求出S的最大值.

查看答案和解析>>

科目: 來(lái)源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(23):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某商場(chǎng)將每臺(tái)進(jìn)價(jià)為3000元的彩電以3900元的銷(xiāo)售價(jià)售出,每天可銷(xiāo)售出6臺(tái).假設(shè)這種品牌的彩電每臺(tái)降價(jià)100x(x為正整數(shù))元,每天可多售出3x臺(tái).(注:利潤(rùn)=銷(xiāo)售價(jià)-進(jìn)價(jià))
(1)設(shè)商場(chǎng)每天銷(xiāo)售這種彩電獲得的利潤(rùn)為y元,試寫(xiě)出y與x之間的函數(shù)關(guān)系式;
(2)銷(xiāo)售該品牌彩電每天獲得的最大利潤(rùn)是多少?此時(shí),每臺(tái)彩電的銷(xiāo)售價(jià)是多少時(shí),彩電的銷(xiāo)售量和營(yíng)業(yè)額均較高?

查看答案和解析>>

科目: 來(lái)源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(23):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

武夷山市某茶廠(chǎng)生產(chǎn)某品牌茶葉,它的成本價(jià)是每千克180元,售價(jià)是每千克230元,年銷(xiāo)售量為10 000千克.隨著產(chǎn)量增加,為了擴(kuò)大銷(xiāo)售量,增加效益,公司決定拿出一定量的資金做廣告.根據(jù)市場(chǎng)調(diào)查,若每年投入廣告費(fèi)為x(萬(wàn)元)時(shí),產(chǎn)品的年銷(xiāo)售量將是原銷(xiāo)售量的y倍,且y與x之間的關(guān)系如圖所示,可近似看作是拋物線(xiàn)的一部分.
(1)根據(jù)圖象提供的信息,求y與x之間的函數(shù)關(guān)系式;
(2)求年利潤(rùn)S(萬(wàn)元)與廣告費(fèi)x(萬(wàn)元)之間的函數(shù)關(guān)系式;(年利潤(rùn)S=年銷(xiāo)售總額-成本費(fèi)-廣告費(fèi))
(3)問(wèn)廣告費(fèi)x(萬(wàn)元)在什么范圍內(nèi),公司獲得的年利潤(rùn)S(萬(wàn)元)隨廣告費(fèi)的增大而增多?

查看答案和解析>>

同步練習(xí)冊(cè)答案