科目: 來源: 題型:
袋子中裝有4個(gè)黑球和2個(gè)白球,這些球的形狀、大小、質(zhì)地等完全相同,在看不到球的條件下,隨機(jī)地從袋子中摸出三個(gè)球.下列是必然事件的是
A.摸出的三個(gè)球中至少有一個(gè)球是黑球
B.摸出的三個(gè)球中至少有一個(gè)球是白球
C.摸出的三個(gè)球中至少有兩個(gè)球是黑球
D.摸出的三個(gè)球中至少有兩個(gè)球是白球
查看答案和解析>>
科目: 來源: 題型:
如圖,在平面直角坐標(biāo)系xOy中,AB在x軸上,以AB為直徑的半⊙O’與y軸正半軸交于點(diǎn)C,連接BC,AC.CD是半⊙O’的切線,AD⊥CD于點(diǎn)D.
(1)求證:∠CAD =∠CAB;
(2)已知拋物線過A、B、C三點(diǎn),AB=10 ,tan∠CAD=.
① 求拋物線的解析式;
② 判斷拋物線的頂點(diǎn)E是否在直線CD上,并說明理由;
③ 在拋物線上是否存在一點(diǎn)P,使四邊形PBCA是直角梯形.若存在,直接寫出點(diǎn)P的坐標(biāo)(不寫求解過程);若不存在,請說明理由.
解:
查看答案和解析>>
科目: 來源: 題型:
拋物線頂點(diǎn)坐標(biāo)為點(diǎn)C(1,4),交x軸于點(diǎn)A(3,0),交y軸于點(diǎn)B.
(1) 求此拋物線的解析式;
(2) 拋物線上是否存在點(diǎn)P,使,若存在,求出P點(diǎn)坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
已知二次函數(shù)y=ax2-4x+c的圖象過點(diǎn)(-1, 0)和點(diǎn)(2,-9).
(1) 求該二次函數(shù)的解析式并寫出其對稱軸;
(2) 已知點(diǎn)P(2 , -2),連結(jié)OP , 在x軸上找一點(diǎn)M,使△OPM是等腰三角形,請直接寫出點(diǎn)M的坐標(biāo)(不寫求解過程).
解:
查看答案和解析>>
科目: 來源: 題型:
如圖,在中,以為直徑的交于點(diǎn),點(diǎn)為的中點(diǎn),連結(jié)交于點(diǎn),且.
(1)判斷直線與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若的半徑為2,,求的長.
解:
查看答案和解析>>
科目: 來源: 題型:
如圖 , 已知二次函數(shù)y = x-4x + 3的圖象交x軸于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)), 交y軸于點(diǎn)C.
(1)求直線BC的解析式;
(2)點(diǎn)D是在直線BC下方的拋物線上的一個(gè)動點(diǎn),當(dāng)△BCD的面積最大時(shí),求D點(diǎn)坐標(biāo).
解:
查看答案和解析>>
科目: 來源: 題型:
如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(﹣2,0),等邊三角形AOC經(jīng)過平移或軸對稱或旋轉(zhuǎn)都可以得到△OBD.
(1)△AOC沿x軸向右平移得到△OBD,則平移的距離是 個(gè)單位長度;
(2)△AOC與△BOD關(guān)于直線對稱,則對稱軸是 ;
(3)△AOC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)可以得到△DOB,則旋轉(zhuǎn)角度是 度,在此旋轉(zhuǎn)過程中,△AOC掃過的圖形的面積是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com