科目: 來源: 題型:
【題目】在畫二次函數(shù)的圖象時,甲寫錯了一次項的系數(shù),列表如下
…… | ﹣1 | 0 | 1 | 2 | 3 | …… | |
…… | 6 | 3 | 2 | 3 | 6 | …… |
乙寫錯了常數(shù)項,列表如下:
…… | ﹣1 | 0 | 1 | 2 | 3 | …… | |
…… | ﹣2 | ﹣1 | 2 | 7 | 14 | …… |
通過上述信息,解決以下問題:
(1)求原二次函數(shù)的表達(dá)式;
(2)對于二次函數(shù),當(dāng)_____時,的值隨的值增大而增大;
(3)若關(guān)于的方程有兩個不相等的實數(shù)根,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,⊙O的直徑AB=10,弦AC=8,連接BC。
(1)尺規(guī)作圖:作弦CD,使CD=BC(點D不與B重合),連接AD;(保留作圖痕跡,不寫作法)
(2)在(1)所作的圖中,求四邊形ABCD的周長。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,平行于x軸的直線AC分別交拋物線y1=x2(x≥0)與y2=(x≥0)于B、C兩點,過點C作y軸的平行線交y1于點D,直線DE∥AC,交y2于點E,則=_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知C(3,4),以點C為圓心的圓與y軸相切.點A、B在x軸上,且OA=OB.點P為⊙C上的動點,∠APB=90°,則AB長度的最大值為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=45°,過點A作AD⊥BC于點D,點E為AD上一點,且ED=BD.
(1)求證:△ABD≌△CED;
(2)若CE為∠ACD的角平分線,求∠BAC的度數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】某校為了開展“陽光體育運(yùn)動”,計劃購買籃球和足球.已知購買20個籃球和40個足球的總金額為4600元;購買30個籃球和50個足球的總金額為6100元.
(1)每個籃球、每個足球的價格分別為多少元?
(2)若該校購買籃球和足球共60個,且購買籃球的總金額不超過購買足球的總金額,則該校最多可購買多少個籃球?
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)在浙江衛(wèi)視全新推出的大型戶外競技真人秀節(jié)目﹣﹣《奔跑吧兄弟》中,七位主持人鄧超、王祖藍(lán)、王寶強(qiáng)、李晨、陳赫、鄭凱及Angelababy(楊穎)在“撕名牌環(huán)節(jié)”的成績分別為:8,5,7,8,6,8,5,則這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是 .
(2)某學(xué)校想了解學(xué)生對撕名牌游戲的喜歡程度,對學(xué)校部分學(xué)生進(jìn)行了抽樣調(diào)查,就學(xué)生對游戲的喜歡程度(A:喜歡;B:一般;C:不喜歡;D:無所謂)進(jìn)行數(shù)據(jù)統(tǒng)計,并繪制了如下兩幅不完整的統(tǒng)計圖.
①此次調(diào)查的樣本容量為 ;
②條形統(tǒng)計圖中存在的錯誤是 (填A、B、C中的一個);
③在圖2中補(bǔ)畫條形統(tǒng)計圖中不完整的部分;
④若從該校喜歡撕名牌游戲的學(xué)生中抽取10人進(jìn)行比賽,則喜歡撕名牌游戲的小明被抽中的概率是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交
于點A(1,4)、點B(-4,n).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△OAB的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,點O在斜邊AB上,以O為圓心,OB為半徑作圓,分別與BC、AB相交于點D、E,連接AD,已知∠CAD=∠B.
(1)求證:AD是⊙O的切線;
(2)若∠B=30°,AC=,求劣弧BD與弦BD所圍陰影圖形的面積;
(3)若AC=4,BD=6,求AE的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點A(a,0),B(0,b),且a,b滿足a2-2ab+b2+(b-4)2=0,點C為線段AB上一點,連接OC.
(1)直接寫出a=____,b=_____;
(2)如圖1,P為OC上一點,連接PA,PB.若PA=B0,∠BPC=30°.求點P的縱坐標(biāo);
(3)如圖2,在(2)的條件下,點M是AB上一動點,以OM為邊在OM的右側(cè)作等邊△OMN,連接CN.若OC=t,求ON+CN的最小值(結(jié)果用含t的式子表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com