(本小題滿分14分)如圖,四棱錐
中,
平面
,四邊形
是矩形,
,
分別是
,
的中點(diǎn).若
,
。
(1)求證:
平面
;
(2)求直線
平面
所成角的正弦值。
(1)取
PC的中點(diǎn)
G,證明四邊形
AEGF是平行四邊形,從而得證
(2)
試題分析:(1)取
PC的中點(diǎn)
G,連結(jié)
EG,
FG,
又由
F為
PD中點(diǎn),則
F G . ……2分
又由已知有
∴四邊形
AEGF是平行四邊形.
……4分
又AF
平面
PEC,
EG.
……6分
(2)
故
……10分
……12分
,
直線
FC與平面
PCE所成角的正弦值為
. ……14分
點(diǎn)評:解決立體幾何問題,要充分發(fā)揮空間想象能力,更要緊扣判定定理和性質(zhì)定理,定理中要求的條件要一一列舉出來,求線面角時(shí),要先作再證再求,還要注意線面角的取值范圍.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在五棱錐P—ABCDE中,PA⊥平面ABCDE,AB∥CD,AC∥ED,AE∥BC,
ABC=
,AB=2
,BC=2AE=4,
是等腰三角形.
(Ⅰ)求證:平面PCD⊥平面PAC;
(Ⅱ)求四棱錐P—ACDE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在三棱錐
中,
,
,
,點(diǎn)
、
、
分別為
、
、
的中點(diǎn).
(1)求直線
與平面
所成角的正弦值;
(2)求二面角
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖1,
,
,過動(dòng)點(diǎn)
A作
,垂足
在線段
上且異于點(diǎn)
,連接
,沿
將△
折起,使
(如圖2所示).
(1)當(dāng)
的長為多少時(shí),三棱錐
的體積最大;
(2)當(dāng)三棱錐
的體積最大時(shí),設(shè)點(diǎn)
,
分別為棱
、
的中點(diǎn),試在棱
上確定一點(diǎn)
,使得
,并求
與平面
所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
三棱錐
的高為
,若三個(gè)側(cè)面兩兩垂直,則
一定為△
的( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
如圖,在正三棱柱
中,已知
在棱
上,且
,若
與平面
所成的角為
,則
為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)m,n為兩條直線,α,β為兩個(gè)平面,則下列四個(gè)命題中,正確的命題是( )
A.若m?α,n?α,且m∥β,n∥β,則α∥β |
B.若m∥α,m∥n,則n∥α |
C.若m∥α,n∥α,則m∥n |
D.若m,n為兩條異面直線,且m∥α,n∥α,m∥β,n∥β,則α∥β |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
(如右圖) 在正方體ABCD-A
1B
1C
1D
1中,
(1)證明:平面AB
1D
1∥平面BDC
1 (2)設(shè)M為A
1D
1的中點(diǎn),求直線BM與平面BB
1D
1D所成角的正弦值.
查看答案和解析>>