【題目】若函數(shù)滿足(1)對于定義域上的任意,恒有;(2)對于定義域上的任意時,恒有,則稱函數(shù)理想函數(shù),給出下列四個函數(shù)中:① ; ;③;④,則被稱為理想函數(shù)的有(

A.B.②④C.D.

【答案】B

【解析】

先理解理想函數(shù)的定義,再考查各函數(shù)的奇偶性及單調性,對于分段函數(shù),畫出函數(shù)圖像,再觀察圖像即可得解.

解:由題意可得理想函數(shù)為奇函數(shù)且在定義域上為減函數(shù),

對于①,的定義域為,函數(shù)的減區(qū)間為,即函數(shù)在上不為減函數(shù),即①不為理想函數(shù)

對于②,上的減函數(shù)且為奇函數(shù),即②為理想函數(shù)

對于③,,即函數(shù)不為奇函數(shù),即③不為理想函數(shù);

對于④,函數(shù)的圖像如圖所示,由圖可知④為理想函數(shù);

即被稱為理想函數(shù)的有②④,

故選:B.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的短軸長為2,且橢圓的離心率為.

(1)求橢圓的方程;

(2)過橢圓的上焦點作相互垂直的弦,,求為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年4月23日“世界讀書日”來臨之際,某校為了了解中學生課外閱讀情況,隨機抽取了100名學生,并獲得了他們一周課外閱讀時間(單位:小時)的數(shù)據(jù),按閱讀時間分組:第一組[0,5), 第二組[5,10),第三組[10,15),第四組[15,20),第五組[20,25],繪制了頻率分布直方圖如下圖所示。已知第三組的頻數(shù)是第五組頻數(shù)的3倍。

(1)求的值,并根據(jù)頻率分布直方圖估計該校學生一周課外閱讀時間的平均值;

(2)現(xiàn)從第三、四、五這3組中用分層抽樣的方法抽取6人參加!爸腥A詩詞比賽”。經(jīng)過比賽后,從這6人中隨機挑選2人組成該校代表隊,求這2人來自不同組別的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)的定義域為(0,+∞),且對一切x>0,y>0都有,當時,有

(1)求f(1)的值;

(2)判斷f(x)的單調性并加以證明;

(3)若f(4)=2,求f(x)在[1,16]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】氣象意義上,從春季進入夏季的標志為:“連續(xù)5天的日平均溫度不低于22℃”.現(xiàn)有甲、乙、丙三地連續(xù)5天的日平均溫度的記錄數(shù)據(jù)(記錄數(shù)據(jù)都是正整數(shù)):

①甲地:5個數(shù)據(jù)的中位數(shù)為24,眾數(shù)為22;

②乙地:5個數(shù)據(jù)的中位數(shù)為27,總體均值為24;

③丙地:5個數(shù)據(jù)的中有一個數(shù)據(jù)是32,總體均值為26,總體方差為10.8;

則肯定進入夏季的地區(qū)的有( )

A. ①②③ B. ①③ C. ②③ D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 是定義R的奇函數(shù),當時,.

1)求函數(shù) 的解析式;

2)畫出函數(shù)的簡圖(不需要作圖步驟),并求其單調遞增區(qū)間

3)當時,求關于m的不等式 的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形是正方形,平面,,,, 分別為,的中點.

1求證:平面;

2求平面與平面所成銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,角 , 所對的邊分別為, ,且.

(Ⅰ)求角的大;

(Ⅱ)已知, 的面積為,求的周長.

【答案】(Ⅰ).(Ⅱ).

【解析】試題分析】(I)利用正弦定理和三角形內角和定理化簡已知,可求得的值,進而求得的大小.(II)利用余弦定理和三角形的面積公式列方程組求解的的值,進而求得三角形周長.

試題解析】

(Ⅰ)由及正弦定理得, ,

,∴,

又∵,∴.

又∵,∴.

(Ⅱ)由 ,根據(jù)余弦定理得,

的面積為,得.

所以 ,得,

所以周長.

型】解答
束】
18

【題目】為促進農業(yè)發(fā)展,加快農村建設,某地政府扶持興建了一批“超級蔬菜大棚”.為了解大棚的面積與年利潤之間的關系,隨機抽取了其中的7個大棚,并對當年的利潤進行統(tǒng)計整理后得到了如下數(shù)據(jù)對比表:

大棚面積(畝)

4.5

5.0

5.5

6.0

6.5

7.0

7.5

年利潤(萬元)

6

7

7.4

8.1

8.9

9.6

11.1

由所給數(shù)據(jù)的散點圖可以看出,各樣本點都分布在一條直線附近,并且有很強的線性相關關系.

(Ⅰ)求關于的線性回歸方程;

(Ⅱ)小明家的“超級蔬菜大棚”面積為8.0畝,估計小明家的大棚當年的利潤為多少;

(Ⅲ)另外調查了近5年的不同蔬菜畝平均利潤(單位:萬元),其中無絲豆為:1.5,1.7,2.1,2.2,2.5;彩椒為:1.8,1.9,1.9,2.2,2.2,請分析種植哪種蔬菜比較好?

參考數(shù)據(jù): , .

參考公式: , .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在用二分法求方程在區(qū)間內的近似解時,先將方程變形為,構建,然后通過計算以判斷的正負號,再按步驟取區(qū)間中點值,計算中點的函數(shù)近似值,如此往復縮小零點所在區(qū)間,計算得部分數(shù)據(jù)列表如下:

步驟

區(qū)間左端點

區(qū)間右端點

、中點的值

中點的函數(shù)近似值

1

2

3

2.5

-0.102

2

0.189

3

2.625

0.044

4

2.5

2.625

2.5625

-0.029

5

2.5625

2.625

2.59375

0.008

6

2.5625

2.59375

2.578125

-0.011

7

2.578125

2.59375

2.5859375

-0.001

8

2.5859375

2.59375

2.58984375

0.003

9

2.5859375

2.58984375

2.587890625

0.001

1)判斷的正負號;

2)請完成上述表格,在空白處填上正確的數(shù)字;

3)若給定的精確度為0.1,則到第幾步驟即可求出近似值?此時近似值為多少?

4)若給定的精確度為0.01,則需要到第幾步驟才可求出近似值?近似值為多少?

查看答案和解析>>

同步練習冊答案