精英家教網 > 高中數學 > 題目詳情

【題目】河道上有一座圓拱橋,在正常水位時,拱圈最高點距水面9m,拱圈內水面寬22m.一條船在水面以上部分高6.5m,船頂部寬4m,故通行無阻.近日水位暴漲了2.7m,為此,必須加重艦載,降低船身,才能通過橋洞.試問船身至少應該降低多少?(精確到0.01,參考數據:

【答案】解:以正常水位時河道中央O為原點,過點O垂直于水面的直線為y軸,建立平面直角坐標系,如圖所示.
設橋拱圓的圓心O1(0,y0),半徑為r,則圓的方程為
依題意得:(r﹣9)2+112=r2
解得: ,
∴圓的方程為
當x=2時,
6.5﹣(8.82﹣2.70)=0.38m
∴為使船能通過橋洞,應至少降低船身0.38m

【解析】建立坐標系,確定圓的方程,再令x=2,即可求得通過橋洞,船身至少應該降低多少.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,正三角形ABC的邊長為2,D、E、F分別在三邊AB,BC和CA上,且D為AB的中點,∠EDF=90°,∠BDE=θ(0°<θ<90°).
(1)當tan∠DEF= 時,求θ的大小;
(2)求△DEF的面積S的最小值及使得S取最小值時θ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某工廠利用輻射對食品進行滅菌消毒,現準備在該廠附近建一職工宿舍,并對宿舍進行防輻射處理,建房防輻射材料的選用與宿舍到工廠距離有關.若建造宿舍的所有費用p(萬元)和宿舍與工廠的距離x(km)的關系為:p= (0≤x≤8),若距離為1km時,宿舍建造費用為100萬元.為了交通方便,工廠與宿舍之間還要修一條道路,已知購置修路設備需5萬元,鋪設路面每公里成本為6萬元,設f(x)為建造宿舍與修路費用之和.
(1)求f(x)的表達式,并寫出其定義域;
(2)宿舍應建在離工廠多遠處,可使總費用f(x)最小,并求最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知雙曲線,拋物線, 有公共的焦點 在第一象限的公共點為,直線的傾斜角為,且,則關于雙曲線的離心率的說法正確的是()

A. 僅有兩個不同的離心率 B. 僅有兩個不同的離心率 C. 僅有一個離心率 D. 僅有一個離心率

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某工廠要建造一個長方體無蓋貯水池,其容積為6400m3 , 深為4m,如果池底每1m2的造價為300元,池壁每1m2的造價為240元,問怎樣設計水池能使總造價最低,最低總造價是多少元?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線l1:(1+4k)x﹣(2﹣3k)y+(2﹣14k)=0,圓C:x2+y2﹣6x﹣8y+9=0.
(1)判斷直線l1與圓的位置關系,并證明你的結論;
(2)直線l2過直線l1的定點且l1⊥l2 , 若l1與圓C交與A,B兩點,l2與圓C交與E,F兩點,求AB+EF的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設命題p:x∈R,都有ax2>﹣ax﹣1(a≠0)恒成立;命題q:圓x2+y2=a2與圓(x+3)2+(y﹣4)2=4外離.如果命題“p∨q”為真命題,“p∧q”為假命題,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(20)(本小題滿分13分)
已知函數,其中是自然對數的底數.
)求曲線在點處的切線方程;
)令,討論的單調性并判斷有無極值,有極值時求出極值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知在四面體ABCD中,E,F分別是AC,BD的中點,若AB=2,CD=4,EF⊥AB,則EF與CD所成的角的度數為(
A.90°
B.45°
C.60°
D.30°

查看答案和解析>>

同步練習冊答案