下列說法正確的有
 
(把正確的題號(hào)寫在橫線上):
①Z⊆R;       
②f(x)=x與g(x)=
x2
x
表示同一個(gè)函數(shù); 
③-1∉Z,∅⊆Z; 
④已知映射f:x→y=x2,則4的原象是±2.
考點(diǎn):命題的真假判斷與應(yīng)用
專題:簡(jiǎn)易邏輯
分析:對(duì)于①,根據(jù)整數(shù)集、實(shí)數(shù)集的概念判斷;
對(duì)于②,根據(jù)函數(shù)相等的概念判斷;
對(duì)于③,由-1是整數(shù),說明該命題是假命題;
對(duì)于④,該映射只給了對(duì)應(yīng)法則,沒有建立這個(gè)映射的兩個(gè)集合,因此④假.
解答: 解:對(duì)于①,根據(jù)數(shù)系的擴(kuò)充,有Z⊆Q⊆R⇒Z⊆R,故①正確;
對(duì)于②,g(x)的定義域?yàn)椴粸榱愕娜w實(shí)數(shù),與函數(shù)y=x的定義域不同,故它們不是相同函數(shù),故②假;
對(duì)于③,顯然-1∈Z,且該命題是且命題,故③為假命題;
對(duì)于④,只給了映射的對(duì)應(yīng)法則,所以原像不能確定,故④為假命題.
故答案為:①
點(diǎn)評(píng):本題考查命題真假的判定,此類問題一般考查概念為主,所以對(duì)概念的理解到位、準(zhǔn)確是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,如果x與y都是整數(shù),就稱點(diǎn)(x,y)為整點(diǎn),下列命題中正確的是
 
(寫出所有正確命題的編號(hào))
(1)存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過任何整點(diǎn)
(2)如果k與b都是無理數(shù),則直線y=kx+b不經(jīng)過任何整點(diǎn)
(3)直線l經(jīng)過無窮多個(gè)整點(diǎn),當(dāng)且僅當(dāng)l經(jīng)過兩個(gè)不同的整點(diǎn)
(4)存在恰經(jīng)過一個(gè)整點(diǎn)的直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線ax2+by2=12的兩條動(dòng)弦MA,MB所在直線的斜率分別為k1,k2
(1)已知a=b=3且A(-2,0),B(2,0),試證明:k1k2為定值.
(2)已知a=3,b=4.
①若A(-2,0),B(2,0),試判斷k1k2是否為定值?若是,求出定值;若不是,請(qǐng)說明理由.
②若定點(diǎn)M(1,-
3
2
)且k1k2=-
3
4
,試判斷直線AB是否過一定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若有且只有一個(gè)常數(shù)c使得對(duì)于任意x∈[a,2a],都有y∈[a,a2]滿足方程logaxy=c,則a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=3,a2=1,an+2=an+an+1,則a7=( 。
A、7B、20C、12D、23

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-mx2+6mx-m+8
的定義域?yàn)镽,則實(shí)數(shù)m取值范圍為( 。
A、{m|-1≤m≤0}
B、{m|-1<m<0}
C、{m|m≤0}
D、{m|m<-1或m>0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

探究函數(shù)f(x)=x+
4
x
,x∈(0,+∞)的性質(zhì),列表如下:
x0.511.51.71.922.12.22.33457
y8.554.174.054.00544.0054.024.044.355.87.57

(1)根據(jù)以上列表畫出f(x)的圖象,寫出f(x)的單調(diào)區(qū)間及f(x)的最值;
(2)證明:函數(shù)f(x)=x+
4
x
(x>0)在區(qū)間(0,2)上遞減.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x3
3
+
1
2
ax2+2bx+c的兩個(gè)極值分別為f(x1)和f(x2),若x1和x2分別在區(qū)間(-2,0)與(0,2)內(nèi),則
b-2
a-1
的取值范圍為( 。
A、(-2,
2
3
B、[-2,
2
3
]
C、(-∞,-2)∪(
2
3
,+∞)
D、(-∞,-2]∪[
2
3
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二項(xiàng)式(
x
2
-
1
3x
)8
的展開式中含x4的項(xiàng)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案