12.命題“對(duì)任意$x∈[0,\frac{π}{4}]$,tanx<m恒成立”是假命題,則實(shí)數(shù)m取值范圍是(-∞,1].

分析 由x的范圍求出tanx的范圍,再由tanx<m恒成立求出m的范圍,結(jié)合補(bǔ)集思想求得命題“對(duì)任意$x∈[0,\frac{π}{4}]$,tanx<m恒成立”是假命題的m的取值范圍.

解答 解:當(dāng)$x∈[0,\frac{π}{4}]$時(shí),tanx∈[0,1],
若tanx<m恒成立,則m>1.
∵命題“對(duì)任意$x∈[0,\frac{π}{4}]$,tanx<m恒成立”是假命題,
∴m≤1.
∴實(shí)數(shù)m取值范圍是(-∞,1].
故答案為:(-∞,1].

點(diǎn)評(píng) 本題考查命題的真假判斷與應(yīng)用,考查恒成立問(wèn)題的求解方法,體現(xiàn)了補(bǔ)集思想在解題中的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=2x+$\frac{x}$+c,其中b,c為常數(shù)且滿足f(1)=4,f(2)=5.
(1)求b,c的值;
(2)證明函數(shù)f(x)在區(qū)間(0,1)上是減函數(shù),并判斷f(x)在(1,+∞)上的單調(diào)性;
(3)若存在$x∈[{\frac{1}{2},3}]$,使得$\frac{1}{2}f(x)+4m<\frac{1}{2}f(-x)+{m^2}+4$成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{1}{2}$x3+cx在x=1處取得極值.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知△ABC周長(zhǎng)為12,A(-2,0),B(2,0),
(1)求頂點(diǎn)C的軌跡方程;
(2)設(shè)點(diǎn)M(m,0)在線段AB上,頂點(diǎn)C的軌跡和(-4,0),(4,0)形成曲線L,點(diǎn)P是L上任意一點(diǎn).當(dāng)|$\overrightarrow{MP}$|最小時(shí),點(diǎn)P恰好在(4,0),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖,在矩形ABCD中,$AB=\sqrt{3},BC=1$,將△ACD沿折起,使得D折起的位置為D1,且D1在平面ABC的射影恰好落在AB上,則直線D1C與平面ABC所成角的正弦值為( 。
A.$\frac{1}{3}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知復(fù)數(shù)z=m2(1+i)-m(m+i)(m∈R),若z是實(shí)數(shù),則m的值為0或1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知A,B,C是圓x2+y2=1上互不相同的三個(gè)點(diǎn),且滿足|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|,則$\overrightarrow{AB}$$•\overrightarrow{AC}$的取值范圍是[-$\frac{1}{2}$,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在△ABC中,b=17,c=24,B=45°,則此三角形解的情況是( 。
A.一解B.兩解C.一解或兩解D.無(wú)解

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.i為虛數(shù)單位,則復(fù)數(shù)$\frac{2-4i}{3-i}$的模為$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案